In this article, we consider the load frequency control problem for a class of power systems based on the dynamic event-triggered control (ETC) approach. The transmission networks are unreliable in the sense that malicious denial-of-service (DoS) attacks may arise in the power system. First, a model-based feedback controller is designed, which utilizes estimated states, and thus can compensate the error between plant states and the feedback data. Then, a dynamic event-triggered mechanism (DETM) is proposed by introducing an internal dynamic variable and a timer variable with jump dynamics. The proposed (DETM) can exclude Zeno behavior by regularizing a prescribed strictly positive triggering interval. Incorporated in the ETC scheme, a novel hybrid model is established to describe the flow and jump dynamics of the power system in the presence of DoS attacks. Based on the hybrid dynamic ETC scheme, the power system stability can be preserved if the attacks frequency and duration sustain within an explicit range. In addition, the explicit range is further maximized based on the measurement trigger-resetting property. Finally, a numerical example is presented to show the effectiveness of our results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2022.3163271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!