Gas recognition is essential in an electronic nose (E-nose) system, which is responsible for recognizing multivariate responses obtained by gas sensors in various applications. Over the past decades, classical gas recognition approaches such as principal component analysis (PCA) have been widely applied in E-nose systems. In recent years, artificial neural network (ANN) has revolutionized the field of E-nose, especially spiking neural network (SNN). In this paper, we investigate recent gas recognition methods for E-nose, and compare and analyze them in terms of algorithms and hardware implementations. We find each classical gas recognition method has a relatively fixed framework and a few parameters, which makes it easy to be designed and perform well with limited gas samples, but weak in multi-gas recognition under noise. While ANN-based methods obtain better recognition accuracy with flexible architectures and lots of parameters. However, some ANNs are too complex to be implemented in portable E-nose systems, such as deep convolutional neural networks (CNNs). In contrast, SNN-based gas recognition methods achieve satisfying accuracy and recognize more types of gases, and could be implemented with energy-efficient hardware, which makes them a promising candidate in multi-gas identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2022.3166530 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Urology, Second People's Hospital of Yichang, Second People's Hospital of China Three Gorges University, Yichang, China.
Emphysematous pyelonephritis (EPN) is a rare but severe necrotizing infection often associated with diabetes, ureteral obstruction, and gas production in the renal parenchyma and perinephric area. This report describes a 54-year-old man with type 2 diabetes who presented with right lumbar pain and was diagnosed with EPN complicated by right ureteral calculi and perinephric gas accumulation. Despite initial improvement with fluid resuscitation, antibiotics, and drainage, inadequate blood glucose control led to a worsening of the infection, eventually involving the psoas major muscle and iliac vessels.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFNanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, School of Chemical Engineering, Xinjiang University, Urumqi 830017, China.
Lead (Pb) is classified as a prevalent metallic pollutant, significantly impacting the ecological environment, especially human health. Consequently, it is crucial to develop adsorbent materials that are environmentally friendly, cost-effective, and which possess high selectivity. This study aims to fabricate a Pb(II)-imprinted acrylonitrile-co-acrylic acid composite material by using modified sand particles as the carrier, and then to investigate its properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!