An 8-channel AFE with a group-chopping instrumentation amplifier (GCIA) is proposed for bio-potential recording applications. The group-chopping technique cascades chopper switches to progressively swap channels and dynamically removes gain mismatch among all channels. An 8-phase non-overlapping clocking scheme is developed and achieves excellent between-channel gain mismatch characteristics. The dynamic offsets among all channels are mitigated by the GCIA as well. The GCIA is the first work that minimizes the gain mismatch across more than two channels. With the help of the group-chopping, combined with an area-efficient open-loop structure, the GCIA shows <0.04% between-channel gain mismatch, the lowest mismatch reported to date. The chip is fabricated in 0.18µm 1P6M CMOS, occupies only 0.017 mm/Ch., consumes 2.1 μW/Ch. under 0.5 V supply and achieves an NEF of 2.1.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2022.3166513DOI Listing

Publication Analysis

Top Keywords

gain mismatch
16
instrumentation amplifier
8
bio-potential recording
8
mismatch channels
8
group-chopping
4
group-chopping 8-channel
4
8-channel 004%
4
gain
4
004% gain
4
mismatch
4

Similar Publications

Article Synopsis
  • Coronary microvascular disease (CMVD) affects small blood vessels in the heart and can cause issues like ischemia or heart attacks without blocked arteries, leading to a need for better treatment options.
  • Current research in genetics, particularly through genome-wide association studies (GWAS) on coronary artery disease (CAD), has identified numerous genetic markers that could help understand and target therapies for CMVD.
  • The article suggests that more in-depth genetic studies specifically focused on CMVD are necessary, emphasizing the importance of diverse representation in research to further uncover its underlying mechanisms and potential treatments.
View Article and Find Full Text PDF

Background: The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

December 2024

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

Catch-Up Saccades in Vestibulo-Ocular Reflex Deficit: Contribution of Visual Information?

Ear Hear

December 2024

Institut national de la santé et de la recherche médicale, U1028, Centre National de Recherche Scientifique, UMR5292, Lyon Neuroscience Research Center, Integrative Multisensory Perception and ACTion Team, Lyon, France.

Objectives: Catch-up saccades help to compensate for loss of gaze stabilization during rapid head rotation in case of vestibular deficit. While overt saccades observed after head rotation are obviously visually guided, some of these catch-up saccades occur with shorter latency while the head is still moving, anticipating the needed final eye position. These covert saccades seem to be generated based on the integration of multisensory inputs.

View Article and Find Full Text PDF

Enhancing the detection of clinically relevant biomarkers in advanced uterine and tubo-ovarian carcinomas through genome-wide analysis.

Pathol Res Pract

December 2024

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY,  USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA. Electronic address:

Background: Advanced-stage tube-ovarian cancers (TOC) and uterine cancers (UC) significantly contribute to cancer mortality. While surgery achieves clinical remission in most cases, recurrence often necessitates systemic therapy. Recent molecular phenotype studies have advanced targeted therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!