The molecular tetravalent oxidation state for praseodymium is observed in solution oxidation of the anionic trivalent precursor [K][Pr(NP(1,2-bis-Bu-diamidoethane)(NEt))] (1-Pr(NP*)) with AgI at -35 °C. The Pr complex is characterized in solution cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln(NP(1,2-bis-Bu-diamidoethane)(NEt))] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt00758dDOI Listing

Publication Analysis

Top Keywords

redox chemistry
8
cyclic voltammetry
8
theoretical modeling
8
tetravalent praseodymium
8
praseodymium complex
8
spectroscopic electrochemical
4
electrochemical characterization
4
characterization imidophosphorane
4
complex
4
imidophosphorane complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!