Self-assembly of amphiphilic amino acid derivatives for biomedical applications.

Chem Soc Rev

CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.

Published: May 2022

Amino acids are one of the simplest biomolecules and they play an essential role in many biological processes. They have been extensively used as building blocks for the synthesis of functional nanomaterials, thanks to their self-assembly capacity. In particular, amphiphilic amino acid derivatives can be designed to enrich the diversity of amino acid-based building blocks, endowing them with specific properties and/or promoting self-assembly through hydrophobic interactions, hydrogen bonding, and/or π-stacking. In this review, we focus on the design of various amphiphilic amino acid derivatives able to self-assemble into different types of nanostructures that were exploited for biomedical applications, thanks to their excellent biocompatibility and biodegradability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cs01064fDOI Listing

Publication Analysis

Top Keywords

amphiphilic amino
12
amino acid
12
acid derivatives
12
biomedical applications
8
building blocks
8
amino
5
self-assembly amphiphilic
4
derivatives biomedical
4
applications amino
4
amino acids
4

Similar Publications

Understanding the mechanism of self-assembly driven by non-covalent interactions is crucial for designing supramolecular materials with desired properties. Here we investigate the self-assembly of aromatic peptide amphiphiles, Fmoc-L2QG and Fmoc-L3QG using a combination of spectroscopic, transmission electron and superresolution optical microscopy techniques. Our results show that Fmoc-L2QG leads to concentration-dependent assembly, forming fibrous assemblies at low concentrations and supramolecular droplets via liquid-liquid phase separation (LLPS) at higher concentrations.

View Article and Find Full Text PDF

Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices.

Biophys Chem

December 2024

Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), POB 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Electronic address:

KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation.

View Article and Find Full Text PDF
Article Synopsis
  • Four new aromatic imides with triphenylamino (TPA) groups are introduced, differing in their number and arrangement of TPA units.
  • Compounds 1-3 are variations of 1,8-naphthalimides with different functional groups, while compound 4 is a naphthalene diimide (NDI) that features TPA groups at both ends.
  • The study highlights how these modifications affect their optoelectronic properties and explores how the distinct aggregation behaviors of compounds 2 and 3 can be used for creating nanoparticles for biological imaging.
View Article and Find Full Text PDF

Metal Ion-Mediated Supramolecular Nanotube Catalyst for Enantioselective Reactions.

Langmuir

December 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.

Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (l/d-AlaC) are fabricated as chiral catalysts for Diels-Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by l/d-AlaC without Cu(II) ions, we found that the l/d-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions.

View Article and Find Full Text PDF

The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!