A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metal-Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. | LitMetric

Mixed-matrix membranes (MMMs) based on luminescent metal-organic frameworks (MOFs) and emissive polymers with the combination of their unique advantages have great potential in separation science, sensing, and light-harvesting applications. Here, we demonstrate MMMs for the field of high-speed visible-light communication (VLC) using a very efficient energy transfer strategy at the interface between a MOF and an emissive polymer. Our steady-state and ultrafast time-resolved experiments, supported by high-level density functional theory calculations, revealed that efficient and ultrafast energy transfer from the luminescent MOF to the luminescent polymer can be achieved. The resultant MMMs exhibited an excellent modulation bandwidth of around 80 MHz, which is higher than those of most well-established color-converting phosphors commonly used for optical wireless communication. Interestingly, we found that the efficient energy transfer further improved the light communication data rate from 132 Mb/s of the pure polymer to 215 Mb/s of MMMs. This finding not only showcases the promise of the MMMs for high-speed VLC but also highlights the importance of an efficient and ultrafast energy transfer strategy for the advancement of data rates of optical wireless communication.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c00483DOI Listing

Publication Analysis

Top Keywords

energy transfer
16
metal-organic frameworks
8
mixed-matrix membranes
8
high-speed visible-light
8
visible-light communication
8
efficient energy
8
transfer strategy
8
efficient ultrafast
8
ultrafast energy
8
optical wireless
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!