Scaffold-Hopping Approach To Identify New Chemotypes of Dimpropyridaz.

J Agric Food Chem

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China.

Published: September 2022

Dimpropyridaz is a pyrazole carboxamide insecticide with a novel mode of action, currently under worldwide development by BASF, providing excellent activity against sucking pests. A series of dimpropyridaz analogues were designed to investigate the impact of bioisosteric heterocyclic replacements on the biological activity and molecular properties. Focus was given to prepare analogues where the 4-pyridazinyl moiety was replaced by 5-pyrimidinyl, 2-pyrimidinyl, 3-pyridazinyl, and 2-pyrazinyl groups. Five different synthetic routes were developed for the preparation of these analogues, delivering the target compounds in moderate to good yields. We explained some aspects of the observed structure-activity relationship by a density functional theory (DFT) calculation and DFT-derived Multiwfn and VMD program models. These findings provide first insights into the important role of the 4-pyridazinyl heterocyclic moiety in the pyrazole carboxamide insecticide chemical class and the mechanism of action of dimpropyridaz.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c00636DOI Listing

Publication Analysis

Top Keywords

pyrazole carboxamide
8
carboxamide insecticide
8
scaffold-hopping approach
4
approach identify
4
identify chemotypes
4
dimpropyridaz
4
chemotypes dimpropyridaz
4
dimpropyridaz dimpropyridaz
4
dimpropyridaz pyrazole
4
insecticide novel
4

Similar Publications

Targeting JNK3 for Alzheimer's disease: Design and synthesis of novel inhibitors with aryl group diversity utilizing wide pocket.

Eur J Med Chem

January 2025

Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do, 15588, Republic of Korea. Electronic address:

JNK3, a brain-specific stress-activated protein kinase, plays a critical role in Alzheimer's disease pathogenesis through phosphorylation of Tau and APP. This study aimed to develop selective JNK3 inhibitors based on a pyrazole scaffold, focusing on (E)-1-(2-aminopyrimidin-4-yl)-4-styryl-1H-pyrazole-3-carboxamide derivatives. Through systematic structural modifications and extensive SAR analysis, we identified compounds 24a and 26a as highly potent JNK3 inhibitors, with IC values of 12 and 19 nM, respectively.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!