Analysis of Nucleoporin Function Using Inducible Degron Techniques.

Methods Mol Biol

Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Published: April 2022

Over the last decade, the use of auxin-inducible degrons (AID) to control the stability of target proteins has revolutionized the field of cell biology. AID-mediated degradation helps to overcome multiple hurdles that have been encountered in studying multisubunit protein complexes, like the nuclear pore complex (NPC), using classical biochemical and genetic methods. We have used the AID system for acute depletion of individual members of the NPC, called nucleoporins, in order to distinguish their roles both within established NPCs and during NPC assembly.Here, we describe a protocol for CRISPR/Cas9-mediated gene targeting of genes with the AID tag. As an example, we describe a step-by-step protocol for targeting of the NUP153 gene. We also provide recommendations for screening strategies and integration of the sequence encoding the Transport Inhibitor Response 1 (TIR1) protein, a E3-Ubiquitin ligase subunit necessary for AID-dependent protein degradation. In addition, we discuss applications of the NUP-AID system and functional assays for analysis of NUP-AID tagged cell lines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098028PMC
http://dx.doi.org/10.1007/978-1-0716-2337-4_9DOI Listing

Publication Analysis

Top Keywords

analysis nucleoporin
4
nucleoporin function
4
function inducible
4
inducible degron
4
degron techniques
4
techniques decade
4
decade auxin-inducible
4
auxin-inducible degrons
4
degrons aid
4
aid control
4

Similar Publications

Imaging-Based Quantitative Assessment of Biomolecular Condensates in vitro and in Cells.

J Biol Chem

December 2024

European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:

The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.

View Article and Find Full Text PDF

Background: NUP155 was reported to involve breast invasive carcinoma and hepatocellular carcinoma. We hypothesized that NUP155 and NDC1impacted the progression of NSCLC.

Methods: The dataset was analyzed to find differentially expressed genes.

View Article and Find Full Text PDF

Nuclear pore proteins control nucleocytoplasmic transport; however, certain nucleoporins play regulatory roles in activities such as transcription and chromatin organization. The fission yeast basket nucleoporin Nup211 is implicated in mRNA export and is essential for cell viability. Nup211 preferentially associates with heterochromatin, however, it is unclear whether it plays a role in regulating transcription.

View Article and Find Full Text PDF

The gene encodes a nuclear pore complex protein (nucleoporin, 214 kilodaltons) which plays a critical role in messenger RNA export to the cytoplasm and import of substrates from the cytoplasm. Biallelic mutations in the gene have been associated with susceptibility to acute infection-induced encephalopathy type 9 (ILAE9) (Online Mendelian Inheritance in Man (OMIM), 114350), an autosomal recessive disorder. Herein, we describe for the first time, a fetus with hydrops and arthrogryposis multiplex with a homozygous novel consensus splice site variant in the NUP214 gene, chr9:g.

View Article and Find Full Text PDF

Quantitative proteomics analysis reveals the pathogenesis of obstructed defecation syndrome caused by abnormal expression of dystrophin.

World J Gastroenterol

December 2024

Department of Colorectal and Anal Surgery (Clinical Center for Pelvic Floor Surgery), Clinical Center of Constipation and Pelvic Floor Disease of Wuhan, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China.

Background: Obstructed defecation syndrome (ODS) represents the most prevalent form of chronic constipation, affecting a diverse patient population, leading to numerous complications, and imposing a significant burden on healthcare resources. Most ODS patients have insufficient rectal propulsion, but the exact mechanism underlying the pathogenesis of ODS remains unclear.

Aim: To explore the molecular mechanism underlying the pathogenesis of ODS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!