Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With recent outbreaks of fatal strains of diseases and the emergency of antibiotic resistance, there is a pressing demand to discover bactericidal materials that can effectively reduce or prevent infections by pathogenic bacteria. Herein, silver(I) metal organic frameworks Ag(HBTC) were embedded into biocompatible polylactic acid (PLA) fibrous membranes through an electrospinning process as an antibiotic-free material for effective bacterial killing. The as-synthesized Ag(HBTC)/PLA composite membrane showed an inactivation efficiency of more than 99.9% against () and () at a concentration of 200-250 mg L. Mechanistic investigation indicated that the steady release of Ag ions and ˙OH generation from the composites contributed to the efficient antibacterial activities through irreversible damage to the bacterial cell membranes. In-depth proteomic analysis demonstrated that Ag(HBTC)/PLA exerted a biological effect towards bacterial cells through down-regulating functional proteins, thereby destroying the central biochemical pathways of the cellular energy metabolism process, reducing resistance to oxidative damage and inhibiting cell division. In general, this study shows a promising perspective on designing MOF/PLA membranes with broad-spectrum disinfection capability for potential environmental sterilization and public healthcare protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt04234c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!