AI Article Synopsis

  • Recent research emphasizes the role of metabolic changes and low oxygen levels in the central nervous system as significant factors in multiple sclerosis (MS).
  • In a study using a rodent model, researchers found that the spinal cords of EAE mice exhibited lower oxygen saturation and disrupted blood flow compared to healthy mice, with oxygen treatment partially alleviating this hypoxia.
  • The study also introduced optoacoustic imaging as a promising method to further investigate hypoxia and vascular changes in MS, showing reductions in vascular network complexity despite increased vascular density in EAE mice.

Article Abstract

Recent studies suggest that metabolic changes and oxygen deficiency in the central nervous system play an important role in the pathophysiology of multiple sclerosis (MS). In our present study, we investigated the changes in oxygenation and analyzed the vascular perfusion of the spinal cord in a rodent model of MS. We performed multispectral optoacoustic tomography of the lumbar spinal cord before and after an oxygen enhancement challenge in mice with experimental autoimmune encephalomyelitis (EAE), a model for MS. In addition, mice were transcardially perfused with lectin to label the vasculature and their spinal columns were optically cleared, followed by light sheet fluorescence microscopy. To analyze the angioarchitecture of the intact spine, we used VesSAP, a novel deep learning-based framework. In EAE mice, the spinal cord had lower oxygen saturation and hemoglobin concentration compared to healthy mice, indicating compromised perfusion of the spinal cord. Oxygen administration reversed hypoxia in the spinal cord of EAE mice, although the ventral region remained hypoxic. Additionally, despite the increased vascular density, we report a reduction in length and complexity of the perfused vascular network in EAE. Taken together, these findings highlight a new aspect of neuroinflammatory pathology, revealing a significant degree of hypoxia in EAE in vivo that is accompanied by changes in spinal vascular perfusion. The study also introduces optoacoustic imaging as a tractable technique with the potential to further decipher the role of hypoxia in EAE and to monitor it in MS patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996517PMC
http://dx.doi.org/10.1186/s40478-022-01337-4DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
spinal
8
hypoxia spinal
8
optoacoustic imaging
8
vascular perfusion
8
perfusion spinal
8
cord oxygen
8
eae mice
8
hypoxia eae
8
cord
6

Similar Publications

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).

View Article and Find Full Text PDF

Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.

View Article and Find Full Text PDF

Long-term efficacy of Mirabegron-anticholinergic combination in paediatric neurogenic bladder.

J Pediatr Urol

January 2025

Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.

Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.

Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!