Adult stem cell sources for skeletal and smooth muscle tissue engineering.

Stem Cell Res Ther

Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zürich, Wagistrasse 21, 4.OG, 8952, Schlieren, Switzerland.

Published: April 2022

Introduction: Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process.

Conclusion: The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996587PMC
http://dx.doi.org/10.1186/s13287-022-02835-xDOI Listing

Publication Analysis

Top Keywords

adult stem
20
stem cells
20
skeletal smooth
16
tissue engineering
16
smooth muscle
12
stem cell
8
muscle engineering
8
cells
7
engineering
6
stem
6

Similar Publications

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms.

Biochim Biophys Acta Mol Basis Dis

January 2025

Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!