Boosting dendritic cell nanovaccines.

Nat Nanotechnol

Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.

Published: May 2022

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-022-01089-1DOI Listing

Publication Analysis

Top Keywords

boosting dendritic
4
dendritic cell
4
cell nanovaccines
4
boosting
1
cell
1
nanovaccines
1

Similar Publications

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

Microneedle patch-involved local therapy synergized with immune checkpoint inhibitor for pre- and post-operative cancer treatment.

J Control Release

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, PR China. Electronic address:

The metastasis and recurrence of cancer post-surgery remain the major reasons for treatment failures. Herein, a photo-immune nanoparticle decorating with M1 macrophage membrane (BD@LM) is designed based on the inflammatory environment after surgical resection. By loading photosensitizer black phosphorus quantum dots (BPQDs) and chemotherapeutics doxorubicin (DOX) in BD@LM nanoparticles, an effective chemophototherapy-mediated immunogenic cell death of tumor cells is triggered, subsequently leading to the maturation of dendritic cells for further immune cascade.

View Article and Find Full Text PDF

Highly stable lithium metal anodes enabled by bimetallic metal-organic frameworks derivatives-modified carbon cloth.

J Colloid Interface Sci

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:

Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.

View Article and Find Full Text PDF

FEMC-deuterogenic artificial solid electrolyte interphase boosts high-performance sodium-ion batteries.

Chem Commun (Camb)

January 2025

Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.

A NaF-rich composite artificial interphase is generated relying on a simple chemical reaction by regulating methyl 2,2,2-trifluoromethyl ester reactivity, which can promote rapid ion transport and effectively inhibit dendrite growth in carbonate electrolytes. The assembled NaF@Na‖NaV(PO) full cell attains a long lifespan of 4000 cycles at 5C with 95% capacity retention, and a high specific capacity of 80.8 mAh g at 30C.

View Article and Find Full Text PDF

Dendritic cells in triple-negative breast cancer: From pathophysiology to therapeutic applications.

Cancer Treat Rev

January 2025

Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal. Electronic address:

Breast cancer is the second most commonly diagnosed cancer in women and the fifth leading cause of cancer-related deaths worldwide. It is a highly heterogeneous disease, consisting of multiple subtypes that vary significantly in clinical characteristics and survival outcomes. Triple-negative breast cancer (TNBC) is a particularly aggressive and challenging subtype of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!