A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural network modeling of differential binding between wild-type and mutant CTCF reveals putative binding preferences for zinc fingers 1-2. | LitMetric

AI Article Synopsis

  • The study focuses on identifying DNA binding motifs for individual DNA binding domains (DBDs) of transcription factors (TFs), particularly CTCF, which is crucial for understanding gene regulation.
  • A new method involving deep convolutional neural networks (CNNs) was developed to analyze chromatin immunoprecipitation sequencing (ChIP-seq) data, allowing the identification of binding preferences and conservation in mutant TFs.
  • Findings revealed known binding motifs for most CTCF ZFs and suggested a new GAG motif for ZF 1, indicating the potential for this approach to uncover binding preferences across various TFs.

Article Abstract

Background: Many transcription factors (TFs), such as multi zinc-finger (ZF) TFs, have multiple DNA binding domains (DBDs), and deciphering the DNA binding motifs of individual DBDs is a major challenge. One example of such a TF is CCCTC-binding factor (CTCF), a TF with eleven ZFs that plays a variety of roles in transcriptional regulation, most notably anchoring DNA loops. Previous studies found that CTCF ZFs 3-7 bind CTCF's core motif and ZFs 9-11 bind a specific upstream motif, but the motifs of ZFs 1-2 have yet to be identified.

Results: We developed a new approach to identifying the binding motifs of individual DBDs of a TF through analyzing chromatin immunoprecipitation sequencing (ChIP-seq) experiments in which a single DBD is mutated: we train a deep convolutional neural network to predict whether wild-type TF binding sites are preserved in the mutant TF dataset and interpret the model. We applied this approach to mouse CTCF ChIP-seq data and identified the known binding preferences of CTCF ZFs 3-11 as well as a putative GAG binding motif for ZF 1. We analyzed other CTCF datasets to provide additional evidence that ZF 1 is associated with binding at the motif we identified, and we found that the presence of the motif for ZF 1 is associated with CTCF ChIP-seq peak strength.

Conclusions: Our approach can be applied to any TF for which in vivo binding data from both the wild-type and mutated versions of the TF are available, and our findings provide new potential insights binding preferences of CTCF's DBDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004084PMC
http://dx.doi.org/10.1186/s12864-022-08486-9DOI Listing

Publication Analysis

Top Keywords

binding preferences
12
binding
11
neural network
8
dna binding
8
binding motifs
8
motifs individual
8
individual dbds
8
ctcf zfs
8
ctcf chip-seq
8
binding motif
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!