Nitrification is a major challenge in chloraminated drinking water systems, resulting in undesirable loss of disinfectant residual. Consequently, heterotrophic bacteria growth is increased, which adversely affects the water quality, causing taste, odour, and health issues. Regular monitoring of various water quality parameters at susceptible areas of the water distribution system (WDS) helps to detect nitrification at an earlier stage and allows sufficient time to take corrective actions to control it. Strategies to monitor nitrification in a WDS require conducting various microbiological tests or assessing surrogate parameters that are affected by microbiological activities. Additionally, microbial decay factor (Fm) is used by water utilities to monitor the status of nitrification. In contrast, approaches to manage nitrification in a WDS include controlling various factors that affect monochloramine decay rate and ammonium substrate availability, and that can inhibit nitrification. However, some of these control strategies may increase the regulated disinfection-by-products level, which may be a potential health concern. In this paper, various strategies to monitor and control nitrification in a WDS are critically examined. The key findings are: (i) the applicability of some methods require further validation using real WDS, as the original studies were conducted on laboratory or pilot systems; (ii) there is no linkage/formula found to relate the surrogate parameters to the concentration of nitrifying bacteria, which possibly improve nitrification monitoring performance; (iii) improved methods/monitoring tools are required to detect nitrification at an earlier stage; (iv) further studies are required to understand the effect of soluble microbial products on the change of surrogate parameters. Based on the current review, we recommend that the successful outcome using many of these methods is often site-specific, hence, water utilities should decide based on their regular experiences when considering economic and sustainability aspects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997939 | PMC |
http://dx.doi.org/10.3390/ijerph19074003 | DOI Listing |
J Eval Clin Pract
February 2025
Akşehir Kadir Yallagöz Health School, Selcuk University, Konya, Türkiye.
Aim: The purpose of this study is to compare the efficacy of an artificial intelligence (AI)-based care plan learning strategy with standard training techniques in order to determine how it affects nursing students' learning results in newborn resuscitation.
Methods: Seventy third-year nursing students from a state university in Türkiye participated in the study. They were split into two groups: the experimental group, which received care plans based on AI, and the control group, which received traditional instruction.
Sci Rep
December 2024
Physical Therapy Department, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran.
The study aimed to determine if virtual reality (VR) games could enhance neuromuscular control and improve anticipatory and compensatory strategies in ball-kicking for soccer players. It was a single-blind randomized clinical trial involving 32 male soccer players with chronic ankle instability. Participants were divided into two groups: VR games and balance training.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
Accurate characterisation of seismic source mechanisms in mining environments is crucial for effective hazard mitigation, but it is complicated by the presence of anisotropic geological conditions. Neglecting anisotropic effects during moment tensor (MT) inversion introduces significant distortions in the retrieved source characteristics. In this study, we investigated the impact of ignoring anisotropy during MT inversion on the reliability of hazard assessment.
View Article and Find Full Text PDFSci Rep
December 2024
School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.
A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, which aims at improving the networks connectivity and the communications performance among a fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control through joint consideration with unknown multi-user mobility, environmental effects on channel characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication performance index is defined using the minimum spanning tree in graph theory, which considers both the communication link between ground node and UAV, and the communication link between ground nodes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Science, Xi'an Technological University, Xi'an, 710021, PR China.
This paper introduces a class of insulin-glucose-glucocorticoid impulsive systems in the treatment of patients with diabetes to consider the effect of glucocorticoids. The existence and uniqueness of the positive periodic solution of the impulsive model at double fixed time is confirmed for type 1 diabetes mellitus (T1DM) using the [Formula: see text] function. Further, the global asymptotic stability of the positive periodic solution is achieved following Floquet multiplier theory and comparison principle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!