Living Lab Experience in Turin: Lifestyles and Exposure to Black Carbon.

Int J Environ Res Public Health

DIATI-Department of Environment, Land and Infrastructure Engineering, Politecnico of Torino, 10129 Torino, Italy.

Published: March 2022

State-of-the-art, continuous personal monitoring is a reference point for assessing exposure to air pollution. European air-quality standards for particulate matter (PM) use mass concentration of PM (PM with aerodynamic diameters ≤ 10 μm (PM10) or ≤2.5 μm (PM2.5)) as the metric. It would be desirable to determine whether black carbon (BC) can be used as a better, newer indicator than PM10 and PM2.5. This article discusses the preliminary results of one of the three living laboratories developed in the project "Combination of traditional air quality indicators with an additional traffic proxy: Black Carbon (BC)". The Living Lab#1 (LL#1) involved 15 users in the city of Turin, Italy. Three portable aethalometers (AE51) were used to detect personal equivalent black carbon (eBC) concentrations in the respiratory area of volunteers at 10-s intervals as they went about their normal daily activities. The Geo-Tracker App and a longitudinal temporal activity diary were used to track users' movements. The sampling campaign was performed in November for one week. and each user was investigated for 24 h. A total of 8640 eBC measurements were obtained with an average daily personal exposure of 3.1 µg/m (±SD 1.3). The change in movement patterns and the variability of microenvironments were decisive determinants of exposure. Preliminary results highlight the potential utility of Living Labs to promote innovative approaches to design an urban-scale air-quality management plan which also includes BC as a new indicator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997889PMC
http://dx.doi.org/10.3390/ijerph19073866DOI Listing

Publication Analysis

Top Keywords

black carbon
16
living
4
living lab
4
lab experience
4
experience turin
4
turin lifestyles
4
exposure
4
lifestyles exposure
4
black
4
exposure black
4

Similar Publications

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Optical properties and photobleaching of wildfire ashes aqueous extracts.

Environ Sci Process Impacts

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Massive Carbon Black Inhalation.

J Community Hosp Intern Med Perspect

January 2025

Departments of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

Carbon black is the general term for a powdery commercial form of carbon. It can cause adverse health effects after inhalation, ingestion, or dermal contact. Exposure to carbon black particles can have adverse effects on the respiratory system; this exposure usually occurs when people inhale contaminated air in the workplace.

View Article and Find Full Text PDF

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!