Fertilization requires sperm migration toward oocytes and subsequent fusion. Sperm chemotaxis, a process in which motile sperm are attracted by factors released from oocytes or associated structures, plays a key role in sperm migration to oocytes. Here, we studied sperm chemotaxis in the nematode . Our data show that uterus-derived factor (UDF), the protein fraction of uterine extracts, can attract spermatozoa. UDF is heat resistant, but its activity is attenuated by certain proteinases. UDF binds to the surface of spermatozoa but not spermatids, and this process is mediated by membranous organelles that fuse with the plasma membrane. UDF induces spermatozoa to release ATP from intracellular storage sites to the extracellular milieu, and extracellular ATP modulates sperm chemotaxis. Moreover, UDF increases protein serine phosphorylation (pS) levels in sperm, which facilitates sperm chemotaxis. Taken together, we revealed that both extracellular ATP and intracellular pS signaling are involved in sperm chemotaxis. Our data provide insights into the mechanism of sperm chemotaxis in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999757 | PMC |
http://dx.doi.org/10.3390/ijms23074069 | DOI Listing |
Domest Anim Endocrinol
January 2025
BIOFITER-IUCA, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain. Electronic address:
This review presents recent findings on the effect of melatonin on ram spermatozoa. This hormone regulates seasonal reproduction in the ovine species through the hypothalamic-pituitary-gonadal axis, but it also exerts direct effects on spermatogenesis, seminal quality and fertility. In the testis, melatonin stimulates blood flow to this organ, but it also appears to be involved in the differentiation of spermatogonial stem cells and the secretion of testosterone through the MT1 and MT2 receptors.
View Article and Find Full Text PDFProg Lipid Res
November 2024
School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
Long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) constitute one-third to half of fish sperm lipids. Fish sperm is rich in phospholipid (PL)-primarily phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin. DHA is generally the most abundant LC-PUFA in each PL class, followed by competition between ARA and EPA.
View Article and Find Full Text PDFMol Reprod Dev
October 2024
Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
This review focuses on the contribution of the late David Garbers to chemotaxis of sperm, in particular from sea urchin. We will describe his discovery of chemotactic peptides and their cognate receptors, his discovery of a sperm-specific, unique Na/H exchanger that represents a chimera between a solute carrier (SLC) and an ion channel. Finally, we will discuss his contributions to the understanding of cAMP signaling in sperm via soluble adenylyl cyclase (sAC) and its control by Ca ions.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2024
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong, China.
Motile biological cells can respond to local environmental cues and exhibit various navigation strategies to search for specific targets. These navigation strategies usually involve tuning of key biophysical parameters of the cells, such that the cells can modulate their trajectories to move in response to the detected signals. Here we introduce a reinforcement learning approach to modulate key biophysical parameters and realize navigation strategies reminiscent to those developed by biological cells.
View Article and Find Full Text PDFJ Vis Exp
August 2024
Division of Biology and Biological Engineering, California Institute of Technology;
Chemical communication is vital in organismal health, reproduction, and overall well-being. Understanding the molecular pathways, neural processes, and computations governing these signals remains an active area of research. The nematode Caenorhabditis elegans provides a powerful model for studying these processes as it produces a volatile sex pheromone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!