The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999480PMC
http://dx.doi.org/10.3390/ijms23074041DOI Listing

Publication Analysis

Top Keywords

nima family
8
mitotic processes
8
play roles
8
roles mitosis
8
family
5
kinases
5
mitosis
4
mitosis nima
4
family kinases
4
yeast
4

Similar Publications

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored.

View Article and Find Full Text PDF

Several members of the NIMA-related kinase (NEK) family have been implicated in tumor progression; however, the role and underlying mechanisms of NEK8 in gastric cancer (GC) remain unclear. This study revealed a significant upregulation of NEK8 in GC, identifying it as an independent prognostic marker in patients with GC. Consistent with these findings, NEK8 silencing substantially impeded GC aggressiveness both in vitro and in vivo, while its overexpression produced the opposite effect.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • O-GlcNAcylation is a modification that adds a sugar molecule, N-acetylglucosamine, to specific amino acids, influencing signaling pathways important for pyroptosis, a form of cell death.
  • Enhancing O-GlcNAcylation of the protein GSDMD is suggested as a key strategy for improving blood flow issues in sepsis, while GSDME's role in macrophage pyroptosis is linked to high glucose levels in periodontitis.
  • The review discusses O-GlcNAcylation's impact on the NLRP3 inflammasome and other regulators, highlighting its potential as a therapeutic target for diseases like sepsis and osteoarthritis by managing inflammation.
View Article and Find Full Text PDF

The purpose of the current study was to analyze and validate the existing gap in knowledge, by conducting a differential expression analysis and validation of NEK6, NEK7, and NEK9 in breast, cervical, and glioblastoma cancer and targeting these proteins through development of novel site specific inhibitor with favorable pharmacokinetic and safety profile, using open-source databases. The analysis revealed that the targeted kinases were overexpressed in all three types of cancer. Their expression was significantly linked to overall survival rates, which suggests that they play a major role in the development and progression of these cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!