Autophagy is a complex process of degradation of senescent or dysfunctional organelles in cells. Dysfunctional autophagy is associated with many diseases such as cancers, immune dysfunction, and aging. Hydrogen sulfide (HS) is considered to be the third gas signal molecule after nitrous oxide and carbon monoxide. In recent years, HS has been found to have a variety of important biological functions, and plays an important role in a variety of physiological and pathological processes. In this review, we review the recent role and mechanism of HS in regulating autophagy in liver disorders, in order to provide a basis for further research in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999478 | PMC |
http://dx.doi.org/10.3390/ijms23074035 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ulsan National Institute of Science and Technology, Department of Chemistry, UNIST GIL 50, 44919, Ulsan, KOREA, REPUBLIC OF.
Efficient separation of hydrogen isotopes, especially deuterium (D2), is pivotal for advancing industries such as nuclear fusion, semiconductor processing, and metabolic imaging. Current technologies, including cryogenic distillation and Girdler sulfide processes, suffer from significant limitations in selectivity and cost-effectiveness. Herein, we introduce a novel approach utilizing an imidazolium-based Metal-Organic Framework (MOF), JCM-1, designed to enhance D2/H2 separation through temperature-dependent gate-opening controlled by ion exchange.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China. Electronic address:
Background: Food safety has attracted increasing attention in recent years. Harmful gases often produced during food storage have devastating effects on human health and ecosystems, and identifying and detecting them is essential. To date, many traditional methods have been used to monitor the freshness of food products.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:
Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!