Impact of Chitosan on the Mechanical Stability of Soils.

Molecules

Department of Physical Chemistry of Porous Materials, Institute of Agrophysics of Polish Academy of Sciences, Doswiadczalna 4 Str., 20-290 Lublin, Poland.

Published: March 2022

Chitosan is becoming increasingly applied in agriculture, mostly as a powder, however little is known about its effect on soil mechanical properties. Uniaxial compression test was performed for cylindrical soil aggregates prepared from four soils of various properties (very acidic Podzol, acidic Arenosol, neutral Fluvisol and alkaline Umbrisol) containing different proportions of two kinds of chitosan (CS1 of higher molecular mass and lower deacetylation degree, and CS2 of lower molecular mass and higher deacetylation degree), pretreated with 1 and 10 wetting-drying cycles. In most cases increasing chitosan rates successively decreased the mechanical stability of soils that was accompanied by a tendential increase in soil porosity. In one case (Fluvisol treated with CS2) the porosity decreased and mechanical stability increased with increasing chitosan dose. The behavior of acidic soils (Podzol and Arenosol) treated with CS2, differed from the other soils: after an initial decrease, the strength of aggregates increased with increasing chitosan amendment, despite the porosity consequently decreasing. After 10 wetting-drying cycles, the strength of the aggregates of acidic soils appeared to increase while it decreased for neutral and alkaline soils. Possible mechanisms of soil-chitosan interactions affecting mechanical strength are discussed and linked with soil water stability and wettability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000621PMC
http://dx.doi.org/10.3390/molecules27072273DOI Listing

Publication Analysis

Top Keywords

mechanical stability
12
increasing chitosan
12
stability soils
8
molecular mass
8
deacetylation degree
8
wetting-drying cycles
8
decreased mechanical
8
treated cs2
8
increased increasing
8
acidic soils
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!