Powders based on plant raw materials have low storage stability due to their sorption and thermal properties and generate problems during processing. Therefore, there is a need to find carrier agents to improve their storage life as well as methods to evaluate their properties during storage. Water adsorption isotherms and thermal characteristics of the pumpkin powder with various inulin additions were investigated in order to develop state diagrams. Differential scanning calorimetry (DSC) was used to obtained glass transition lines, freezing curves and maximal-freeze-concentration conditions. The glass transition lines were developed using the Gordon-Taylor model. Freezing data were modeled employing the Clausius-Clapeyron equation and its development-Chen model. The glass transition temperature of anhydrous material (Tgs) and characteristic glass transition temperature of maximum-freeze-concentration (Tg') increased with growing inulin additions. Sorption isotherms of the powders were determined at 25 °C by the static-gravimetric method and the experimental data was modeled with four different mathematical models. The Peleg model was the most adequate to describe the sorption data of the pumpkin-inulin powders. Guggenheim-Anderson-de Boer (GAB) monolayer capacity decreased with increasing inulin concentration in the sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000671 | PMC |
http://dx.doi.org/10.3390/molecules27072225 | DOI Listing |
Sci Rep
January 2025
Research Center for Applied Chemistry, Blvd Enrique Reyna 140, San José de los Cerritos, Saltillo, 25294, Mexico.
As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Institute of Innovative Materials (I2, M), Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055, China.
Mutual acquisition of phase-stability and controllable phase-transition becomes a predominant criterion of phase-change materials for the practical long-term energy storage but seems contradictory always. Here a strategy combining coordination and hydrogen bonds hierarchically to create a supercooled liquid in a core-shell coordination structure is reported, addressing that demand successfully. This new material is composed of a Mn-methylurea complex (MM) core and the hierarchically bonded erythritols shell.
View Article and Find Full Text PDFFree Neuropathol
January 2024
Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:
Xylan-derived packaging materials have gained considerable popularity owing to their renewability, non-toxicity, and biodegradability. However, thermoforming is challenging owing to its rigid structure and hydrogen-bonding network of the xylan molecular chain, which limits its large-scale production. Herein, a heat-processable xylan derivative, xylan cinnamate (XC), was synthesized via an esterification reaction in ionic liquids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!