Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC311985PMC
http://dx.doi.org/10.1093/nar/14.23.9536DOI Listing

Publication Analysis

Top Keywords

sequence chloroplast-encoded
4
chloroplast-encoded psba
4
psba gene
4
gene polypeptide
4
polypeptide petunia
4
sequence
1
psba
1
gene
1
polypeptide
1
petunia
1

Similar Publications

Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.

Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.

View Article and Find Full Text PDF

Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA.

View Article and Find Full Text PDF

Diatoms are one of the most important phytoplankton groups in the world's oceans. There are responsible for up to 40% of the photosynthetic activity in the Ocean, and they play an important role in the silicon and carbon cycles by decoupling carbon from atmospheric interactions through sinking and export. These processes are strongly influenced by the taxonomic composition of diatom assemblages.

View Article and Find Full Text PDF

In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. is a nuclear gene encoding a PLS-type PPR protein essential for survival in and maize.

View Article and Find Full Text PDF

Background: Chloroplasts are important semi-autonomous organelles in plants and algae. Unlike higher plants, the chloroplast genomes of green algal linage have distinct features both in organization and expression. Despite the architecture of chloroplast genome having been extensively studied in higher plants and several model species of algae, little is known about the transcriptional features of green algal chloroplast-encoded genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!