Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drone advancements have ushered in new trends and possibilities in a variety of sectors, particularly for small-sized drones. Drones provide navigational interlocation services, which are made possible by the Internet of Things (IoT). Drone networks, on the other hand, are subject to privacy and security risks due to design flaws. To achieve the desired performance, it is necessary to create a protected network. The goal of the current study is to look at recent privacy and security concerns influencing the network of drones (NoD). The current research emphasizes the importance of a security-empowered drone network to prevent interception and intrusion. A hybrid ML technique of logistic regression and random forest is used for the purpose of classification of data instances for maximal efficacy. By incorporating sophisticated artificial-intelligence-inspired techniques into the framework of a NoD, the proposed technique mitigates cybersecurity vulnerabilities while making the NoD protected and secure. For validation purposes, the suggested technique is tested against a challenging dataset, registering enhanced performance results in terms of temporal efficacy (34.56 s), statistical measures (precision (97.68%), accuracy (98.58%), recall (98.59%), F-measure (99.01%), reliability (94.69%), and stability (0.73).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002915 | PMC |
http://dx.doi.org/10.3390/s22072630 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!