The non-contact patient monitoring paradigm moves patient care into their homes and enables long-term patient studies. The challenge, however, is to make the system non-intrusive, privacy-preserving, and low-cost. To this end, we describe an open-source edge computing and ambient data capture system, developed using low-cost and readily available hardware. We describe five applications of our ambient data capture system. Namely: (1) Estimating occupancy and human activity phenotyping; (2) Medical equipment alarm classification; (3) Geolocation of humans in a built environment; (4) Ambient light logging; and (5) Ambient temperature and humidity logging. We obtained an accuracy of 94% for estimating occupancy from video. We stress-tested the alarm note classification in the absence and presence of speech and obtained micro averaged F1 scores of 0.98 and 0.93, respectively. The geolocation tracking provided a room-level accuracy of 98.7%. The root mean square error in the temperature sensor validation task was 0.3°C and for the humidity sensor, it was 1% Relative Humidity. The low-cost edge computing system presented here demonstrated the ability to capture and analyze a wide range of activities in a privacy-preserving manner in clinical and home environments and is able to provide key insights into the healthcare practices and patient behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003543PMC
http://dx.doi.org/10.3390/s22072511DOI Listing

Publication Analysis

Top Keywords

edge computing
12
ambient data
12
data capture
12
capture system
12
computing ambient
8
clinical environments
8
estimating occupancy
8
ambient
5
system
5
capture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!