In our research on sustainable solutions for printed electronics, we are moving towards renewable materials in applications, which can be very challenging from the performance perspective, such as printed circuit boards (PCB). In this article, we examine the potential suitability of wood-based materials, such as cardboard and veneer, as substrate materials for biodegradable solutions instead of the commonly used glass-fiber reinforced epoxy. Our substrate materials were coated with fire retardant materials for improved fire resistance and screen printed with conductive silver ink. The print quality, electrical conductivity, fire performance and biodegradation were evaluated. It was concluded that if the PCB application allows manufacturing using screen printing instead of an etching process, there is the potential for these materials to act as substrates in, e.g., environmental analytics applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000880 | PMC |
http://dx.doi.org/10.3390/ma15072679 | DOI Listing |
Mol Omics
January 2025
Department of Biology, National Changhua University of Education, Changhua 500, Taiwan.
Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
LEPABE-Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
The food packaging industry is one of the fastest growing sectors of our economy, with a large contribution to environmental concerns due to the extensive use of fossil-derived materials. Combining wood-based materials, such as particleboards, with bio-adhesives may offer a great opportunity to develop sustainable packaging solutions with active antioxidant properties. In the present work, a phenolic extract of poplar bark was produced and bio-adhesives were formulated using citric acid as a cross-linker.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China.
Desalinating seawater is a crucial method for addressing the shortage of freshwater resources. High-efficiency, low-cost, and environmentally friendly desalination technologies are key issues that urgently need to be addressed. This work used as a matrix material and prepared @Fe-GA through a complexation reaction to enhance the water evaporation rate and photothermal conversion efficiency of seawater desalination.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 16500 Prague, Czech Republic.
Electron microscopy (EM) is a key tool for studying the microstructure of wood; however, observing uncoated samples poses a challenge due to surface charging. This study aims to identify the critical voltage that allows for the effective observation of uncoated wood samples without significant loading. As part of the experiment, samples of different wood species were tested, including Acacia ( L.
View Article and Find Full Text PDFMater Horiz
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
In recent years, the widespread use of wood products has been observed in many fields. Wooden products have excellent green and environmentally friendly characteristics, but their performance often cannot meet people's needs. Many researchers have conducted in-depth research on wood-based composite materials and their modification methods in order to improve the performance of wood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!