The mechanical strength, thermal stability, thermal performance, and microstructure of Qtech T26 blast mitigation polyurea (T26 polyurea) were studied using quasi-static and dynamic mechanical experiments, thermogravimetric experiments, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) experiments, and contact explosion and non-contact explosion experiments with polyurea-coated reinforced concrete slabs. Additionally, the energy dissipation mechanism of the coating was analyzed. The blast mitigation ability and blast mitigation mechanism of T26 polyurea-coated reinforced concrete slabs were investigated by analyzing the macroscopic morphology of reinforced concrete slabs with or without coatings and the contact explosion simulation of polyurea-coated reinforced concrete slabs. The results showed that T26 polyurea exhibited a certain strain rate effect. Its initial thermal decomposition temperature reached 286 °C, and its thermal stability was good. After carbonization, carbon slag can form and adhere to the structural surface. The glass transition temperature Tgs of the soft segment was -44.9 °C, and the glass transition temperature Tgh of the hard segment was 36.5 °C, showing a certain amount of microphase separation morphology. After the explosion test, there was a small pit on the front surface of the coated reinforced concrete plate, and there was no damage on the back surface. The integrity of the plate was good. The uncoated reinforced concrete slab had a large crater on the front of the explosion surface, and the back of the explosion surface experienced explosion collapse, concrete crushing, and an overall loss of stability. The numerical simulation results showed that the failure mode of the coated plate was consistent with the test. The kinetic energy conversion rate of the uncoated reinforced concrete plate was 87.27%, and the kinetic energy conversion rate of the coated reinforced concrete plate was 95.36%. The T26 coating improved the kinetic energy conversion rate of the structure and improved the blast mitigation ability of the reinforced concrete plate structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000321 | PMC |
http://dx.doi.org/10.3390/ma15072607 | DOI Listing |
Small
January 2025
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China.
Flexible hybrid minerals, primarily composed of inorganic ionic crystal nanolines and a small amount of organic molecules, have significant potential for the development of sustainable structural materials. However, the weak interactions and insufficient crosslinking among the inorganic nanolines limit the mechanical enhancement and application of these hybrid minerals in high-strength structural materials. Inspired by tough biominerals and modern reinforced concrete structures, this study proposes introducing an aramid nanofiber (ANF) network as a flexible framework during the polymerization of calcium phosphate oligomers (CPO), crosslinked by polyvinyl alcohol (PVA) and sodium alginate (SA).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:
The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).
View Article and Find Full Text PDFSci Rep
December 2024
Reserch Institute of Urbanization and Urban Safety, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Sci Rep
December 2024
Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, 33146, USA.
Reinforced concrete (RC) slabs are widely used in modern building structures due to their superior properties and ease of construction. However, their mechanical properties are limited by their punching shear strength in the connection region with the columns. Researchers have attempted to add steel reinforcement in the form of studs and randomly distributed fibers to concrete slabs to improve the punching strength.
View Article and Find Full Text PDFSci Rep
December 2024
Civil Engineering Department, Shoolini University, Solan, Himachal Pradesh, 173229, India.
Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!