Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a new alloying concept for low-density steels. Based on model calculations, samples-or "heats"-with 0.7 wt% C, 1.45 wt% Si, 2 wt% Cr, 0.5 wt% Ni, and an aluminium content varying from 5 to 7 wt% are prepared. The alloys are designed to obtain steel with reduced density and increased corrosion resistance suitable for products subjected to high dynamic stress during operation. Their density is in the range from 7.2 g cm to 6.96 g cm. Basic thermophysical measurements are carried out on all the heats to determine the critical points of each phase transformation in the solid state, supported by metallographic analysis on SEM and LM or the EDS analysis of each phase. It is observed that even at very high austenitisation temperatures of 1100 °C, it is not possible to change the two-phase structure of ferrite and austenite. A substantial part of the austenite is transformed into martensite during cooling at 50 °C s. The carbide kappa phase is segregated at lower cooling rates (around 2.5 °C s).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999408 | PMC |
http://dx.doi.org/10.3390/ma15072539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!