The production of thin-walled beams with various cross-sections is increasingly automated and digitized. This allows producing complicated cross-section shapes with a very high precision. Thus, a new opportunity has appeared to optimize these types of products. The optimized parameters are not only the lengths of the individual sections of the cross section, but also the bending angles and openings along the beam length. The simultaneous maximization of the compressive, bending and shear stiffness as well as the minimization of the production cost or the weight of the element makes the problem a multi-criteria issue. The paper proposes a complete procedure for optimizing various open sections of thin-walled beam with different openings along its length. The procedure is based on the developed algorithms for traditional and soft computing optimization as well as the original numerical homogenization method. Although the work uses the finite element method (FEM), no computational stress analyses are required, i.e., solving the system of equations, except for building a full stiffness matrix of the optimized element. The shell-to-beam homogenization procedure used is based on equivalence strain energy between the full 3D representative volume element (RVE) and its beam representation. The proposed procedure allows for quick optimization of any open sections of thin-walled beams in a few simple steps. The procedure can be easily implemented in any development environment, for instance in MATLAB, as it was done in this paper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000026 | PMC |
http://dx.doi.org/10.3390/ma15072520 | DOI Listing |
Materials (Basel)
November 2024
Institute of Mechatronics, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania.
This study primarily presents a numerical investigation of the dynamic behavior and vibration control in thin-walled, additively manufactured (AM) beam structures, validated through experimental results. Vibration control in thin-walled structures has gained significant attention recently because vibrations can severely affect structural integrity. Therefore, it is necessary to minimize these vibrations or keep them within acceptable limits to ensure the structure's integrity.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
The aim is to reduce the elastic deformation of the web and side walls of low-stiffness thin-walled beams when the floating fixture method is used. This paper takes the number and position of fixture points as the optimization variables, establishes a calculation model of elastic deformation, and constructs the objective function of maximum total elastic deformation. An optimized solution utilizing the augmented multiplier method is employed, which forms the basis for the fixture layout optimization method to reduce the elastic deformation of low-stiffness thin-walled beams.
View Article and Find Full Text PDFSci Rep
November 2023
Department of Engineering, City, University of London, Northampton Square, London, EC1V 0HB, UK.
Classical approaches to enhance auxeticity quite often involve exploring or designing newer architectures. In this work, simple geometrical features at the member level are engineered to exploit non-classical nonlinearities and improve the auxetic behaviour. The structural elements of the auxetic unit cell are here represented by thin strip-like beams, or thin-walled tubular beams.
View Article and Find Full Text PDFMaterials (Basel)
April 2023
Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland.
In order to design an optimal reinforcement of steel thin-walled beams with composite materials, it is worth analyzing two important, although often overlooked issues, which are the selection of the appropriate thickness of the adhesive layer and the effective anchoring length of the composite tape. This paper, which is part of a wider laboratory study devoted to the strengthening of thin-walled steel profiles, focuses on the second issue. The paper involves a description of laboratory four-point bending tests during which ten thin-walled steel beams made of a rectangular section with dimensions of 120 × 60 × 3 and a length of 3 m were tested.
View Article and Find Full Text PDFSci Rep
March 2023
School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
For lightweight steel frame structures consisting of steel H-beams and cold-formed steel columns filled with concrete, seismic performance comparison tests and numerical simulation analyses were performed for bare and infilled frames. The effects of the lightweight wall panels, the axial compression ratio and the wall thickness of the steel sections of the columns on the seismic properties of the structure were investigated. The failure of the bare frame was concentrated in the weld fractures at the beam-column joints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!