A Study on the Static Magnetic and Electromagnetic Properties of Silica-Coated Carbonyl Iron Powder after Heat Treatment for Improving Thermal Stability.

Materials (Basel)

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Published: March 2022

In order to study the thermal stability of coated carbonyl iron powder (CIP) and its influence on magnetic properties, carbonyl iron powder was coated with a silica layer and then annealed in an air atmosphere at elevated temperatures. Transmission electron microscopy (TEM) analysis and Fourier transform infrared spectroscopy confirmed the existence of a silicon dioxide layer with a thickness of approximately 80~100 nm. Compared with uncoated CIP, the silicon-coated CIP still maintained a higher absorption performance after annealing, and the calculated impedance matching value Z only slightly decreased. It is worth noting that when the annealing temperature reached 300 °C, coercivity () increased, and the real and imaginary parts of the permeability decreased, which means that the silicon dioxide layer began to lose its effectiveness. On the contrary, the significant decrease in microwave absorption ability and impedance matching value Z of uncoated CIP after annealing were mainly because the newly formed oxide on the interface became the active polarization center, leading to an abnormal increase in permittivity. In terms of the incremental mass ratio after annealing, 2% was a tipping point for permeability reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999542PMC
http://dx.doi.org/10.3390/ma15072499DOI Listing

Publication Analysis

Top Keywords

carbonyl iron
12
iron powder
12
thermal stability
8
silicon dioxide
8
dioxide layer
8
uncoated cip
8
impedance matching
8
study static
4
static magnetic
4
magnetic electromagnetic
4

Similar Publications

Research on Two-Layer Polymer Composites Alternatively Obtained in a Constant Magnetic Field.

Materials (Basel)

January 2025

Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland.

The aim of this research was to obtain two-layer polymer composites with favorable mechanical and functional properties. The composites consisted of one lower layer of polymer with less elastic properties, containing no admixtures, and one upper layer of polymer with more elastic properties, containing plant admixtures, in the amount of 10% by weight of either goldenrod ( L.), or of turmeric ( L.

View Article and Find Full Text PDF

Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea.

The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces.

View Article and Find Full Text PDF

Oppenauer-type oxidations are catalyzed by air- and moisture-stable, sustainable, (cyclopentadienone)iron carbonyl compounds, but the substrate scope is limited due to the low reduction potential of acetone, which is the most commonly used hydrogen acceptor. We discovered that furfural, an aldehyde derived from cellulosic biomass, is an effective hydrogen acceptor with this class of catalysts. In general, reactions using furfural as the hydrogen acceptor led to higher isolated yields of ketones and aldehydes compared to those using acetone.

View Article and Find Full Text PDF

Herein, we report the solvent-dependent reactivity of Fe(CO) toward AsF in either anhydrous HF or liquid SO. The reaction of Fe(CO) with the superacid HF/AsF leads to the protonation of the iron center and allows for the first-time structural characterization of [FeH(CO)] in the solid state, representing one of the most acidic transition metal hydride complexes to ever be isolated and structurally characterized. In the aprotic but oxidation-stable solvent SO, Fe(CO) is oxidized and dimerized to [Fe(CO)], which is isoelectronic with well-known Mn(CO).

View Article and Find Full Text PDF

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!