Biogas Pollution and Mineral Deposits Formed on the Elements of Landfill Gas Engines.

Materials (Basel)

Physical Aspects of Ecoenergy Department, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Street, 80-231 Gdańsk, Poland.

Published: March 2022

Municipal landfills generate a significant amount of high-energy biogas, which can be used as a renewable gaseous fuel. However, it is necessary to improve the quality of this biogas due to the presence of various chemical compounds. The most common pollutants in landfill biogas include volatile compounds of silicon, sulphur, phosphorus and chlorine. The aforementioned elements, as well as other metals, were found both in the deposits and in the engine oil. The paper presents detailed characteristics of the solid residues formed in selected parts of gas engines powered by landfill biogas. Its elemental composition and morphology were investigated in order to determine the structure and influence of these deposits. In order to better understand the observed features, selected analyses were also conducted for biogas, engine oil and the condensate generated during biogas dewatering. It was found that the content of individual elements in samples collected from the same part of the gas engine but sourced from various landfills vary. The occurrence of elements in deposits, e.g., Mg, Zn, P and Cr, depends on the location of sampling sites and the type of engine. It was also observed that the deposits formed in parts that come into contact with both biogas and engine oil contain Ca or Zn, which can be related to biogas pollutants as well as different oil additives. The presence of Al, Fe, Cu, Cr, Sn or Pb in selected motor oil samples can be explained by the penetration of metallic abrasives, which confirms the abrasive properties of the formed deposits. The analysis of the characteristic deposits may contribute to the selection of an appropriate landfill biogas purification technology, thus reducing the operating costs of energy cogeneration systems. Finally, we highlight challenges for biogas purification processes and anticipate the direction of future work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999940PMC
http://dx.doi.org/10.3390/ma15072408DOI Listing

Publication Analysis

Top Keywords

landfill biogas
12
engine oil
12
biogas
11
deposits formed
8
gas engines
8
biogas engine
8
biogas purification
8
deposits
7
engine
5
oil
5

Similar Publications

A life cycle inventory (LCI) dataset for food waste management was developed using secondary data from scientific literature and government reports. EPA reports on food waste management were used as the basis for collecting literature to review. Unit process parameters from the reviewed literature are compiled and combined with engineering calculations to generate LCI for food management pathways.

View Article and Find Full Text PDF

Experimental Evaluation of Concrete Blended with Eco-Friendly Bio-Sulfur as a Cement Replacement Material.

Materials (Basel)

December 2024

Department of Fire and Disaster Prevention, Semyung University, Jecheon-si 27136, Choongbuk, Republic of Korea.

Bio-sulfur (BS), extracted from landfill bio-gas via microbial methods, was examined herein as a potential cement replacement material. The study developed five modified BS variants through limestone incorporation processes (sulfur-to-limestone ratios of 1:0.5, 1:1, 1:1.

View Article and Find Full Text PDF

Energy is a crucial part of a comprehensive desire to reach any country's long-term economic and social development. Fossil fuels have for a long time been used as the major global cause of energy. However, dependence on fossil fuels contributes to environmental damage.

View Article and Find Full Text PDF

The study evaluates the effectiveness of aged refuse bioreactors (ARBs) in treating young landfill leachate and recovering energy through biogas production. Over 90 days, duplicate reactors (ARB1 and ARB2) were operated through three 30-day recirculation cycles under anaerobic conditions, utilizing aged refuse from a closed landfill in Bangalore, India. The study was extended by an additional 900 days without further leachate addition to assess long-term gas generation potential.

View Article and Find Full Text PDF

Microbial degradation of polyethylene polymer: current paradigms, challenges, and future innovations.

World J Microbiol Biotechnol

December 2024

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.

Polyethylene (PE) is the second most commonly used plastic worldwide, mainly used to produce single-use items such as bags and bottles. Its significant resistance to natural biodegradation results in the accumulation of PE in landfills, leading to various ecological and toxicological consequences. Despite extensive research on the microbial degradation of PE, achieving complete biodegradation remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!