The incorporation of inorganic oxide fillers imparts superior dielectric properties in silicone rubber for high-voltage insulation. However, the dielectric characteristics are influenced by the mechanical stress. The effects of ramped compression on the dielectric properties of neat silicone rubber (NSiR), 15% SiO microcomposite (SSMC), 15% alumina trihydrate (ATH) microcomposite (SAMC) and 10% ATH + 2% SiO hybrid composite (SMNC) are presented in this study. The dielectric constant and dissipation factor were measured before and after each compression especially in the frequency range of 50 kHz to 2MHz. Before the compression, SSMC expressed the highest dielectric constant of 4.44 followed by SMNC and SAMC. After the compression cycle, SAMC expressed a better dielectric behavior exhibiting dielectric constant of 7.19 and a dissipation factor of 0.01164. Overall, SAMC expressed better dielectric response before and after compression cycle with dielectric constant and dissipation factor in admissible ranges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999780 | PMC |
http://dx.doi.org/10.3390/ma15072343 | DOI Listing |
J Phys Condens Matter
January 2025
Department of Physics, University of Kerala, Karyavattom 695581, Thiruvananthapuram, Kerala, India.
The effects of Na doping on the structure magnetic, electric, and magnetoelectric properties of GaFeOwere studied. Rietveld refinement of the XRD data reveals the formation of a single-phase trigonal structure with no impurity on Na doping up to 50% and a significant increase in lattice strain with doping. FTIR and Raman analysis further supported the phase purity of the samples.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands.
The dielectric constant, although a simplified concept when considering atomic scales, enters many mean-field, electrochemical interface models and constant potential models as an important parameter. Here, we use ab initio and machine-learned molecular dynamics to scrutinize the behavior of the electronic contribution to ɛr(z) as a function of distance z from a Pt(111) surface. We show that the resulting dielectric profile can largely be explained as a sum of the metallic response and the density-scaled water response at the interface.
View Article and Find Full Text PDFSci Rep
January 2025
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an, 710071, China.
(AlO)(HfO) films with varying compositions were deposited on silicon substrates via plasma-enhanced atomic layer deposition (PEALD), and metal-oxide-semiconductor (MOS) capacitors were fabricated. The impact of varying induced Al content on the dielectric properties of HfO was examined through electrical measurements. The results showed that increasing Al content raised the flat-band voltage, reduced the interface state density (D), and significantly lowered the leakage current at a given voltage.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
Coulomb attraction with weak screening can trigger spontaneous exciton formation and condensation, resulting in a strongly correlated many-body ground state, namely, the excitonic insulator. One-dimensional (1D) materials natively have ineffective dielectric screening. For the first time, we demonstrate the excitonic instability of single atomic wires of transition metal telluride MTe (M = Mo, W), a family of 1D van der Waals (vdW) materials accessible in the laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!