Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel Pt/BiGdTiO heterojunction was synthesized by a decoration of Pt nanoparticles (PtNPs) on the surface of piezoelectric BiGdTiO (BGTO) through an impregnation process. The photocatalytic, piezo-catalytic, and piezo-photocatalytic activities of the Pt/BGTO heterojunction for methyl orange (MO) degradation were investigated under ultrasonic excitation and whole spectrum light irradiation. The internal piezoelectric field of BGTO and a plasmonic effect have been proven important for the photocatalytic activity of the heterojunctions. Pt/BGTO exhibited an optimum photocatalytic degradation performance of 92% for MO in 70 min under irradiation of whole light spectrum and ultrasonic coexcitation, and this value was about 1.41 times higher than the degradation rate under whole spectrum light irradiation alone. The PtNPs in Pt/BGTO heterojunction can absorb the incident light intensively, and induce the collective oscillation of surface electrons due to the surface plasmon resonance (SPR) effect, thus generating "hot" electron-hole pairs. The internal piezoelectric field produced in BGTO by ultrasonic can promote the separation of SPR-induced "hot" charge carriers and facilitate the production of highly reactive oxidation radicals, thus enhancing Pt/BGTO heterojunction's photocatalytic activity for oxidizing organic dyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000398 | PMC |
http://dx.doi.org/10.3390/nano12071170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!