A Bilayer Skin-Inspired Hydrogel with Strong Bonding Interface.

Nanomaterials (Basel)

Center of Stretchable Electronics and Nanosensors, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Published: March 2022

Conductive hydrogels are widely used in sports monitoring, healthcare, energy storage, and other fields, due to their excellent physical and chemical properties. However, synthesizing a hydrogel with synergistically good mechanical and electrical properties is still challenging. Current fabrication strategies are mainly focused on the polymerization of hydrogels with a single component, with less emphasis on combining and matching different conductive hydrogels. Inspired by the gradient modulus structures of the human skin, we propose a bilayer structure of conductive hydrogels, composed of a spray-coated poly(3,4-dihydrothieno-1,4-dioxin): poly(styrene sulfonate) (PEDOT:PSS) as the bonding interface, a relatively low modulus hydrogel on the top, and a relatively high modulus hydrogel on the bottom. The spray-coated PEDOT:PSS constructs an interlocking interface between the top and bottom hydrogels. Compared to the single layer counterparts, both the mechanical and electrical properties were significantly improved. The as-prepared hydrogel showed outstanding stretchability (1763.85 ± 161.66%), quite high toughness (9.27 ± 0.49 MJ/m3), good tensile strength (0.92 ± 0.08 MPa), and decent elastic modulus (69.16 ± 8.02 kPa). A stretchable strain sensor based on the proposed hydrogel shows good conductivity (1.76 S/m), high sensitivity (a maximum gauge factor of 18.14), and a wide response range (0−1869%). Benefitting from the modulus matching between the two layers of the hydrogels, the interfacial interlocking network, and the patch effect of the PEDOT:PSS, the strain sensor exhibits excellent interface robustness with stable performance (>12,500 cycles). These results indicate that the proposed bilayer conductive hydrogel is a promising material for stretchable electronics, soft robots, and next-generation wearables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000308PMC
http://dx.doi.org/10.3390/nano12071137DOI Listing

Publication Analysis

Top Keywords

conductive hydrogels
12
bonding interface
8
mechanical electrical
8
electrical properties
8
modulus hydrogel
8
strain sensor
8
hydrogel
7
hydrogels
6
modulus
5
bilayer skin-inspired
4

Similar Publications

To address the challenges associated with the storage and application of traditional carbon dot (CDs) solutions, this study introduces a cyan fluorescent carbon dot-based hydrogel (CDs-SCH). The hydrogel was synthesized by integrating cyan fluorescent CDs, derived from penicillamine and m-phenylenediamine, with carboxymethylcellulose (CMC) and sodium alginate (SA), which was then mixed with acrylamide (AM). The resulting CDs-SCH hydrogel was extensively characterized, focusing on its morphology, chemical structure, and fluorescence behavior.

View Article and Find Full Text PDF

Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.

View Article and Find Full Text PDF

Infected bone defects show a significant reduction in neovascularization during the healing process, primarily due to persistent bacterial infection and immune microenvironmental disorders. Existing treatments are difficult to simultaneously meet the requirements of antibacterial and anti-inflammatory treatments for infected bone defects, which is a key clinical therapeutic challenge that needs to be addressed. In this study, a conductive hydrogel based on copper nanoparticles was developed for controlling bacterial infection and remodeling the immune microenvironment.

View Article and Find Full Text PDF

Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.

View Article and Find Full Text PDF

Peripheral nerve tissue engineering is a field that uses cells, growth factors and biological scaffold material to provide a nutritional and physical support in the repair of nerve injuries. The specific properties of injectable human amniotic membrane-derived hydrogel including growth factors as well as anti-inflammatory and neuroprotective agents make it an ideal tool for nerve tissue repair, and metformin may also aid in nerve regeneration. The aim of this study was to investigate the effects of hydrogel derived from amniotic membrane (AM) along with metformin (MET) administration in the repair of sciatic nerve injury in male rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!