Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper mainly studies the hardware implementation of a fully connected neural network based on the 1T1R (one-transistor-one-resistor) array and its application in handwritten digital image recognition. The 1T1R arrays are prepared by connecting the memristor and nMOSFET in series, and a single-layer and a double-layer fully connected neural network are established. The recognition accuracy of 8 × 8 handwritten digital images reaches 95.19%. By randomly replacing the devices with failed devices, it is found that the stuck-off devices have little effect on the accuracy of the network, but the stuck-on devices will cause a sharp reduction of accuracy. By using the measured conductivity adjustment range and precision data of the memristor, the relationship between the recognition accuracy of the network and the number of hidden neurons is simulated. The simulation results match the experimental results. Compared with the neural network based on the precision of 32-bit floating point, the difference is lower than 1%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9000711 | PMC |
http://dx.doi.org/10.3390/nano12071075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!