The Influence of Elevated CO on Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Plants Species and Varieties.

Plants (Basel)

Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad, Elena Drăgoi St., No. 2, 310330 Arad, Romania.

Published: April 2022

Climate change will determine a sharp increase in carbon dioxide in the following years. To study the influence of elevated carbon dioxide on plants, we grew 13 different species and varieties from the family at three carbon dioxide concentrations: 400, 800, and 1200 ppmv. The photosynthetic parameters (assimilation rate and stomatal conductance to water vapor) increase for all species. The emission of monoterpenes increases for plants grown at elevated carbon dioxide while the total polyphenols and flavonoids content decrease. The chlorophyll content is affected only for some species (such as ), while the β-carotene concentrations in the leaves were not affected by carbon dioxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002909PMC
http://dx.doi.org/10.3390/plants11070973DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
20
influence elevated
8
species varieties
8
elevated carbon
8
carbon
5
dioxide
5
elevated volatile
4
volatile emissions
4
emissions photosynthetic
4
photosynthetic characteristics
4

Similar Publications

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Perioperative cardiac arrest (POCA) remains a major challenge in surgical settings, with low survival after cardiopulmonary resuscitation (CPR). This study aims to identify predictive factors for 24 h survival after CPR and cause of POCA. A retrospective, single-center study was conducted on patients aged ≥18 years who experienced POCA and received CPR in the operating room or within 2 h postoperatively at Chiang Mai University Hospital from 2010 to 2019.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!