To increase the organic potato yield, it is necessary to provide the crop with sufficient nutrients and effective means of biocontrol the diseases. The research goal was to characterize the biorationals' efficacy to achieve competitive organic potatoes' yield under various weather conditions. A 4-year trial was carried out in the Leningrad region using Udacha variety potatoes. The tests used liquid forms of new polyfunctional biologicals Kartofin based on highly active I-5-12/23 and organic fertilizer BIAGUM obtained from poultry manure by aerobic fermentation in a closed biofermenter. Significant stimulation in plant growth and development to the flowering phase regardless of the hydrothermal conditions of the growing season was noted. The stimulating effect was determined by the combined use of biorationals pro rata to BIAGUM dose. Kartofin biologicals and BIAGUM almost doubled the potato tubers' yield compared to the control, regardless of the growing season conditions. At the flowering phase, the biological efficacy in potato fungal diseases incidence and development was near 90% under optimal and 50-75% under drought hydrothermal conditions. At the end of vegetation, the efficiency in fungal diseases incidence and development made up 45-65% under optimal and 45-70% under dry conditions. BIAGUM effectiveness in reducing disease development reached 45-50% regardless of growing season conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003074PMC
http://dx.doi.org/10.3390/plants11070962DOI Listing

Publication Analysis

Top Keywords

growing season
12
achieve competitive
8
flowering phase
8
hydrothermal conditions
8
season conditions
8
fungal diseases
8
diseases incidence
8
incidence development
8
conditions
6
polyfunctional biorationals
4

Similar Publications

Floating photovoltaics strongly reduce water temperature: A whole-lake experiment.

J Environ Manage

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.

Floating photovoltaics (FPVs), solar panels installed on floating structures in freshwater ecosystems such as lakes, represent a growing renewable technology aimed at decarbonizing the energy sector. However, robust empirical assessments of its environmental effects are still lacking. We used a Before-After-Control-Impact design replicated at the ecosystem level (n = 6 lakes: three lakes with FPV compared to three non-FPV lakes) to determine the global effects of FPV on water temperature over three years and allowing to isolate FPV effects from natural variability.

View Article and Find Full Text PDF

Background: Over 250 million children are developing sub-optimally due to their exposure to early life adversities. While previous studies have examined the effects of nutritional status, psychosocial adversities, and environmental pollutants on children's outcomes, little is known about their interaction and cumulative effects.

Objectives: This study aims to investigate the independent, interaction, and cumulative effects of nutritional, psychosocial, and environmental factors on children's cognitive development and mental health in urban and rural India.

View Article and Find Full Text PDF

Extreme droughts generally decrease productivity in grassland ecosystems with negative consequences for nature's contribution to people. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America-two of the Northern Hemisphere's largest grass-dominated regions.

View Article and Find Full Text PDF

Comparative analysis of global urban land surface phenology between the MODIS and VIIRS products and extraction methods.

J Environ Manage

January 2025

Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China.

The reliability of land surface phenology (LSP) derived from satellite remote sensing is crucial for obtaining accurate estimates of the phenological response of vegetation to future climate change in urban ecosystems. Differences in phenological definition and extraction methodology using remote sensing can generate systemic errors in estimating the phenological temperature sensitivity to predict the biological response of vegetation. Here, we evaluated the start of the season (SOS), the end of the season (EOS), and the growing season length (GSL) between the Terra and Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics (MCD12Q2) and the Suomi National Polar-Orbiting Partnership NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Land Cover Dynamics (VNP22Q2) over 1470 urban clusters worldwide.

View Article and Find Full Text PDF

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!