Soil aggregates are the material basis of soil structure and important carriers of nutrients. Long-term application of organic and inorganic fertilizers can affect the composition of soil aggregates to varying degrees, which in turn affects the distribution and storage of soil nutrients. We report the results of a 15-year long-term field-based test of aeolian sandy soil and used the wet sieve method to analyze the stability of water-stable aggregates, as well as the distribution characteristics of nutrients in different particle size aggregates. Our results show that long-term application of organic fertilizer (M3) and combined organic−inorganic treatments (NPK1-M1, NPK1-M2, and NPK1-M3) help to increase the amount of organic carbon, inorganic carbon, and cation exchange in the macro-aggregates, and the improvement rates are 92−103%, 8−28%, and 74−85%, respectively. The organic content of the fertilizers also promotes the formation of macro-aggregates, and the stability of aggregates increase from 0.24 to 0.45. In contrast, the application of inorganic fertilizers (NPK1, NPK2, and NPK3) has no marked effect on the formation and stability of macro-aggregates; the application of inorganic fertilizers can merely maintain the organic carbon content of the soil. Correlation analysis shows that the application of organic fertilizers and chemical (inorganic) fertilizers containing phosphorus and potassium can markedly increase the content and reserves of available phosphorus and potassium across all aggregate sizes, and there is a significant positive correlation between these parameters and the amount of applied fertilizer (p < 0.05). Aggregates of various sizes in aeolian sandy soils in arid areas have the potential for greater nutrient storage. Therefore, organic fertilizers can be used in the agricultural production process to improve soil structure and fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003062 | PMC |
http://dx.doi.org/10.3390/plants11070909 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of International Trade and Business, Faculty of Economics and Administrative Sciences, Inonu University, 44000, Malatya, Turkey.
Import demand elasticity (IDE) is a critical metric often employed to guide government decisions regarding tariffs and non-tariff barriers, ensuring that foreign trade remains uninterrupted while optimizing tax revenues. This study, however, leverages IDE to assess the impact of the carbon border adjustment mechanism (CBAM) on Türkiye's decarbonization process. Specifically, the research analyzed the total export quantities and unit prices of four product groups-cement, fertilizers, and inorganic chemicals, steel and iron, and aluminum-exported from Türkiye to the European Union-27 countries under the CBAM framework between 2002 and 2021.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Agriculture, University of Guangxi, Nanning, China.
China is the largest producer and consumer of tobacco ( L.) in the world, and the cultivation and production of tobacco have extremely high economic value and social influence. Applying organic-inorganic fertilizer is a key strategy for boosting tobacco yield and quality.
View Article and Find Full Text PDFAmmonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Oecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!