Poor seedling establishment and growth can be a result of the limitation of light and soil resources in the forest understory. Here, we investigate the interacting effects of stand and soil characteristics on the seedling growth of deciduous species ( and ) and evergreen species () through a 3-year intersite experiment in two contrasting forest stands. Seedlings were grown in both oak and pine stands using two different soil types, i.e., gray-brown forest soil (GB) and red-yellow forest soil (RY). Soil physicochemical properties, light intensity, tree-seedling height, root-collar diameter (RCD), and biomass growth were analyzed between two stands and/or soil types. Light availability was generally more abundant in the pine stand (mean: 1074.08 lx or 20.25%) than the oak stand (mean: 424.33 lx or 9.20%) throughout the year. The height and RCD growth of fast-growing and deciduous and were higher in the pine than in the oak stand, particularly in GB soil. The growth of the slow-growing and evergreen was not affected by the forest stand, except for its higher root growth in the oak stand and RY soil. Therefore, abundant light availability can enhance the growth and seedling establishment of and in the pine-stand understory. Contrarily, may be planted in the understory regardless of light condition, but with a slower growth rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002389PMC
http://dx.doi.org/10.3390/plants11070841DOI Listing

Publication Analysis

Top Keywords

stand soil
12
oak stand
12
growth
9
soil
9
growth deciduous
8
evergreen species
8
forest stands
8
intersite experiment
8
seedling establishment
8
soil types
8

Similar Publications

Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline.

Sci Total Environ

January 2025

Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:

Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.

View Article and Find Full Text PDF

Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass.

J Environ Manage

January 2025

Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:

Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.

View Article and Find Full Text PDF

Soil data from the Barbastro-Balaguer gypsum belt, NE Spain.

Data Brief

February 2025

Estación Experimental de Aula Dei, EEAD - CSIC, Ave. Montañana 1005, 50059 Zaragoza, Spain.

The dataset [1] hosts pedological info and images of the lands -locally known as - of the outcropping gypsiferous core of the Barbastro-Balaguer anticline (Fig. 1). It stands out in the landscape for the linear reliefs due to outcrops of dipping strata with differential resistance to erosion, and also because of its whitish color (Fig.

View Article and Find Full Text PDF

As sustainable forest management gains increasing attention, comprehending the impact of stand density on soil properties and microbial communities is crucial for optimizing forest ecosystem functions. This study employed high-throughput sequencing in conjunction with soil physicochemical analysis to assess the effects of stand density on soil physicochemical properties and microbial community characteristics in Chinese fir plantations, aiming to elucidate the influence of density regulation on ecosystem services. Our results suggested that changes in soil physicochemical properties and microenvironmental conditions were key drivers of soil microbial diversity.

View Article and Find Full Text PDF

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!