A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of Liquid Waste from Biogas Production for Microalgae sp. Cultivation. | LitMetric

Application of Liquid Waste from Biogas Production for Microalgae sp. Cultivation.

Cells

Faculty of Forest Sciences and Ecology, Agriculture Academy Vytautas Magnus University, Donelaicio Str. 58, LT-44248 Kaunas, Lithuania.

Published: April 2022

Microalgae biomass is a viable feedstock for a wide range of industries. Recently, there has also been interest in the ability of microalgae biomass applications for biofuel production. In the meantime, the cultivation of microalgae biomass requires high energy costs, and the application of microalgae for technical purposes is still problematic. A significant part of the cost of biomass arises from the nutrients used for cultivation. Chemical compounds included in the microalgae cultivation media can be replaced by suitable wastes containing nitrogen, phosphorus, and other elements. This could reduce the microalgae biomass cultivation price and allow cheaper biomass to be used for biofuel production. The aim of this work was to comprehensively investigate and optimize the growth process of microalgae using liquid waste (liquid waste after biogas production from sewage sludge and distillers' grain) as a source of nitrogen and phosphorus, and technical glycerol as a carbon source. It was found that higher levels of waste in the cultivation media were found to inhibit the accumulation of microalgal biomass, with the optimum level corresponding to a nitrogen concentration of 0.08 g/L. The influence of technical glycerol from biodiesel production on the yield of microalgal biomass was investigated, and it was found that the addition of 6% glycerol allows an increase in the concentration of microalgal biomass in the cultivation media, from 18.1 to 20.6%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997393PMC
http://dx.doi.org/10.3390/cells11071206DOI Listing

Publication Analysis

Top Keywords

microalgae biomass
16
liquid waste
12
cultivation media
12
microalgal biomass
12
biomass
9
waste biogas
8
biogas production
8
microalgae
8
microalgae cultivation
8
cultivation microalgae
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!