Background: Endotoxemia causes endothelial dysfunction and microthrombosis, which are pathogenic mechanisms of coagulopathy and organ failure during sepsis. Simvastatin has potential anti-thrombotic effects on liver endothelial cells. We investigated the hemostatic changes induced by lipopolysaccharide (LPS) and explored the protective effects of simvastatin against liver vascular microthrombosis. Methods and results: We compared male Wistar rats exposed to LPS (5 mg/kg one i.p. dose) or saline in two experimental protocols—placebo (vehicle) and simvastatin (25 mg/kg die, orally, for 3 days before LPS). Morphological studies were performed by light- and electron-microscopy analyses to show intravascular fibrin deposition, vascular endothelial structure and liver damage. Peripheral- and organ-hemostatic profiles were analyzed using whole blood viscoelastometry by ROTEM, liver biopsy and western-blot/immunohistochemistry of thrombomodulin (TM), as well as immunohistochemistry of the von Willebrand factor (VWF). LPS-induced fibrin deposition and liver vascular microthrombosis were combined with a loss of sinusoidal endothelial TM expression and VWF-release. These changes were associated with parenchymal eosinophilia and necrosis. ROTEM analyses displayed hypo-coagulability in the peripheral blood that correlated with the degree of intrahepatic fibrin deposition (p < 0.05). Simvastatin prevented LPS-induced fibrin deposition by preserving TM expression in sinusoidal cells and completely reverted the peripheral hypo-coagulability caused by endotoxemia. These changes were associated with a significant reduction of liver cell necrosis without any effect on eosinophilia. Conclusions: Simvastatin preserves the antithrombotic properties of sinusoidal endothelial cells disrupted by LPS, deserving pharmacological properties to contrast sepsis-associated coagulopathy and hepatic failure elicited by endotoxemia
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997834 | PMC |
http://dx.doi.org/10.3390/cells11071148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!