In recent days the rising concern over environmental pollution with excessive use of synthetic materials has led to various eco-friendly innovations. Due to the organic nature, abundance and higher strength, natural fibers are gaining a lot of interest among researchers and are also extensively used by various industries to produce ecological products. Natural fibers are widely used in the composite industry as an alternative to synthetic fibers for numerous applications and new sources of fiber are continuously being explored. In this study, a fiber extracted from the Furcraea foetida (FF) plant is characterized for its feasibility as a reinforcement to fabricate polymer composite. The results show that the fiber has a density of 0.903 ± 0.07 g/cm3, tensile strength (σt) of 170.47 ± 24.71 MPa and the fiber is thermally stable up to 250 °C. The chemical functional groups and elements present in the FF fiber are evaluated by conducting Fourier transform infrared spectroscopy (FT-IR) and energy dispersive spectroscopy (EDS). The addition of FF fibers in epoxy reduced the density (13.44%) and hardness (10.9%) of the FF/Epoxy (FF/E) composite. However, the void content (Vc < 8%) and water absorption (WA: < 6%) rate increased in the composite. The FF/E composite with 30% volume of FF fibers showed maximum σt (32.14 ± 5.54 MPa) and flexural strength (σf: 80.23 ± 11.3 MPa).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003038PMC
http://dx.doi.org/10.3390/polym14071476DOI Listing

Publication Analysis

Top Keywords

natural fibers
8
ff/e composite
8
fiber
6
composite
6
fibers
5
processing characterization
4
characterization fiber
4
fiber investigation
4
investigation physical/mechanical
4
physical/mechanical properties
4

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Lignin reinforced eco-friendly and functional nanoarchitectonics materials with tailored interfacial barrier performance.

J Colloid Interface Sci

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:

Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.

View Article and Find Full Text PDF

Measurement of biomechanical properties of transversely isotropic biological tissue using traveling wave expansion.

Med Image Anal

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200040, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai 200040, China; Department of Radiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:

The anisotropic mechanical properties of fiber-embedded biological tissues are essential for understanding their development, aging, disease progression, and response to therapy. However, accurate and fast assessment of mechanical anisotropy in vivo using elastography remains challenging. To address the dilemma of achieving both accuracy and efficiency in this inverse problem involving complex wave equations, we propose a computational framework that utilizes the traveling wave expansion model.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!