https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35406327&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3540632720230308
2073-43601472022Apr02PolymersPolymers (Basel)Polymer-Dispersed Cholesteric Liquid Crystal under Homeotropic Anchoring: Electrically Induced Structures with λ1/2-Disclination.145410.3390/polym14071454Orientational structures of polymer-dispersed cholesteric liquid crystal under homeotropic anchoring and their transformations under the action of an electric field are studied. The switching of cholesteric droplets between different topological states are experimentally and theoretically demonstrated. Structures with λ+1/2-disclination are found and considered. These structures are formed during the transformation of a twisted toroidal configuration induced by a decrease in the electric field when a relative chiral parameter N0>6.3. The transformation of the initial structure with a bipolar distribution of the helix axis into a twisted toroidal configuration and then into a structure with λ+1/2-disclination is investigated in detail. The behavior of these structures under the influence of an external electric field, as well as the appearance of structures with λ−1/2-disclination, are studied. Obtained results are promising for the development of optical materials with programmable properties.GardymovaAnna PAP0000-0003-4139-4555Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia.Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia.KrakhalevMikhail NMN0000-0003-3519-9497Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia.Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk 660041, Russia.RudyakVladimir YuVY0000-0001-7930-9622Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.BarbashovVadim AVA0000-0001-9615-3869Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia.ZyryanovVictor YaVY0000-0001-7373-3342Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia.eng1CXCSRD VAUnited StatesJournal Article20220402
SwitzerlandPolymers (Basel)1015453572073-4360electric field-induced transformationmetastable stateorientational structurepolymer-dispersed cholesteric liquid crystaltopological defectThe authors declare no conflict of interest.
20223420223252022331202241213202241360202241361202242epublish35406327PMC900293210.3390/polym14071454polym14071454Yang C., Wu B., Ruan J., Zhao P., Chen L., Chen D., Ye F. 3D-Printed Biomimetic Systems with Synergetic Color and Shape Responses Based on Oblate Cholesteric Liquid Crystal Droplets. Adv. Mater. 2021;33:2006361. doi: 10.1002/adma.202006361.10.1002/adma.20200636133522013Belmonte A., Pilz da Cunha M., Nickmans K., Schenning A.P.H.J. Brush-Paintable, Temperature and Light Responsive Triple Shape-Memory Photonic Coatings Based on Micrometer-Sized Cholesteric Liquid Crystal Polymer Particles. Adv. Opt. Mater. 2020;8:2000054. doi: 10.1002/adom.202000054.10.1002/adom.202000054Sadati M., Martinez-Gonzalez J.A., Zhou Y., Qazvini N.T., Kurtenbach K., Li X., Bukusoglu E., Zhang R., Abbott N.L., Hernandez-Ortiz J.P., et al. Prolate and oblate chiral liquid crystal spheroids. Sci. Adv. 2020;6:eaba6728. doi: 10.1126/sciadv.aba6728.10.1126/sciadv.aba6728PMC743957032832603Belmonte A., Bus T., Broer D.J., Schenning A.P. Patterned Full-Color Reflective Coatings Based on Photonic Cholesteric Liquid-Crystalline Particles. ACS Appl. Mater. Interfaces. 2019;11:14376–14382. doi: 10.1021/acsami.9b02680.10.1021/acsami.9b02680PMC647348330916920Gao Y., Feng K., Zhang J., Zhang L. Finger-Temperature-Detecting Liquid Crystal Composite Film for Anti-Counterfeiting Labels. Molecules. 2020;25:521. doi: 10.3390/molecules25030521.10.3390/molecules25030521PMC703756531991746Wang Y., Li H., Zhao L., Liu Y., Liu S., Yang J. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets. Appl. Phys. Lett. 2016;109:231906. doi: 10.1063/1.4971973.10.1063/1.4971973Humar M. Liquid-crystal-droplet optical microcavities. Liq. Cryst. 2016;43:1937–1950. doi: 10.1080/02678292.2016.1221151.10.1080/02678292.2016.1221151Zhang Y., Yuan Z., Qiao Z., Barshilia D., Wang W., Chang G.E., Chen Y.C. Tunable Microlasers Modulated by Intracavity Spherical Confinement with Chiral Liquid Crystal. Adv. Opt. Mater. 2020;8:1902184. doi: 10.1002/adom.201902184.10.1002/adom.201902184Wang C., Gong C., Zhang Y., Qiao Z., Yuan Z., Gong Y., Chang G.E., Tu W.C., Chen Y.C. Programmable Rainbow-Colored Optofluidic Fiber Laser Encoded with Topologically Structured Chiral Droplets. ACS Nano. 2021;15:11126–11136. doi: 10.1021/acsnano.1c02650.10.1021/acsnano.1c0265034137585Manna U., Zayas-Gonzalez Y.M., Carlton R.J., Caruso F., Abbott N.L., Lynn D.M. Liquid crystal chemical sensors that cells can wear. Angew. Chem. Int. Ed. 2013;52:14011–14015. doi: 10.1002/anie.201306630.10.1002/anie.20130663024288229Lee H.G., Munir S., Park S.Y. Cholesteric Liquid Crystal Droplets for Biosensors. ACS Appl. Mater. Interfaces. 2016;8:26407–26417. doi: 10.1021/acsami.6b09624.10.1021/acsami.6b0962427618511Wang Y., Zhao L., Xu A., Wang L., Zhang L., Liu S., Liu Y., Li H. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens. Actuators B Chem. 2018;258:1090–1098. doi: 10.1016/j.snb.2017.12.012.10.1016/j.snb.2017.12.012Ailincai D., Pamfil D., Marin L. Multiple bio-responsive polymer dispersed liquid crystal composites for sensing applications. J. Mol. Liq. 2018;272:572–582. doi: 10.1016/j.molliq.2018.09.125.10.1016/j.molliq.2018.09.125Lim J.S., Kim Y.J., Park S.Y. Functional solid-state photonic droplets with interpenetrating polymer network and their applications to biosensors. Sens. Actuators B Chem. 2021;329:129165. doi: 10.1016/j.snb.2020.129165.10.1016/j.snb.2020.129165Oki O., Kulkarni C., Yamagishi H., Meskers S.C.J., Lin Z.H., Huang J.S., Meijer E.W., Yamamoto Y. Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. J. Am. Chem. Soc. 2021;143:8772–8779. doi: 10.1021/jacs.1c03185.10.1021/jacs.1c0318534085826Bezić J., Žumer S. Structures of the cholesteric liquid crystal droplets with parallel surface anchoring. Liq. Cryst. 1992;11:593–619. doi: 10.1080/02678299208029013.10.1080/02678299208029013Seč D., Porenta T., Ravnik M., Žumer S. Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter. 2012;8:11982–11988. doi: 10.1039/c2sm27048j.10.1039/c2sm27048jSeč D., Čopar S., Žumer S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nat. Commun. 2014;5:3057. doi: 10.1038/ncomms4057.10.1038/ncomms405724419153Zhou Y., Bukusoglu E., Martínez-González J.A., Rahimi M., Roberts T.F., Zhang R., Wang X., Abbott N.L., De Pablo J.J. Structural transitions in cholesteric liquid crystal droplets. ACS Nano. 2016;10:6484–6490. doi: 10.1021/acsnano.6b01088.10.1021/acsnano.6b0108827249186Krakhalev M.N., Rudyak V.Y., Prishchepa O.O., Gardymova A.P., Emelyanenko A.V., Liu J.H., Zyryanov V.Y. Orientational structures in cholesteric droplets with homeotropic surface anchoring. Soft Matter. 2019;15:5554–5561. doi: 10.1039/C9SM00384C.10.1039/C9SM00384C31243424Gardymova A.P., Krakhalev M.N., Zyryanov V.Y. Optical textures and orientational structures in cholesteric droplets with conical boundary conditions. Molecules. 2020;25:1740. doi: 10.3390/molecules25071740.10.3390/molecules25071740PMC718125132290090Crooker P., Yang D. Polymer-dispersed chiral liquid crystal color display. Appl. Phys. Lett. 1990;57:2529–2531. doi: 10.1063/1.103845.10.1063/1.103845Cipparrone G., Mazzulla A., Pane A., Hernandez R.J., Bartolino R. Chiral self-assembled solid microspheres: A novel multifunctional microphotonic device. Adv. Mater. 2011;23:5773–5778. doi: 10.1002/adma.201102828.10.1002/adma.20110282822083891Noh J., Liang H.L., Drevensek-Olenik I., Lagerwall J.P. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets. J. Mater. Chem. C. 2014;2:806–810. doi: 10.1039/C3TC32055C.10.1039/C3TC32055CFan J., Li Y., Bisoyi H.K., Zola R.S., Yang D.k., Bunning T.J., Weitz D.A., Li Q. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew. Chem. 2015;127:2188–2192. doi: 10.1002/ange.201410788.10.1002/ange.20141078825487252Yang C., Wu B., Ruan J., Zhao P., Shan J., Zhang R., Yoon D.K., Chen D., Liu K. Mechanochromic Responses of Cholesteric Liquid Crystal Droplets with Nanoscale Periodic Helical Structures Showing Reversible and Tunable Structural Color. ACS Appl. Polym. Mater. 2022;4:463–468. doi: 10.1021/acsapm.1c01362.10.1021/acsapm.1c01362Balenko N.V., Shibaev V.P., Bobrovsky A.Y. Mechano-Optical Response of Novel Polymer Composites Based on Elastic Polyurethane Matrix Filled with Low-Molar-Mass Cholesteric Droplets. Macromol. Mater. Eng. 2021;306:2100262. doi: 10.1002/mame.202100262.10.1002/mame.202100262Orlova T., Aßhoff S.J., Yamaguchi T., Katsonis N., Brasselet E. Creation and manipulation of topological states in chiral nematic microspheres. Nat. Commun. 2015;6:7603. doi: 10.1038/ncomms8603.10.1038/ncomms8603PMC450650126145716Posnjak G., Čopar S., Muševič I. Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 2016;6:26361. doi: 10.1038/srep26361.10.1038/srep26361PMC487380127198649Posnjak G., Čopar S., Muševič I. Hidden topological constellations and polyvalent charges in chiral nematic droplets. Nat. Commun. 2017;8:14594. doi: 10.1038/ncomms14594.10.1038/ncomms14594PMC532179928220770Biagio R.L., Souza R.T., Evangelista L.R., Zola R.S. Frustrated structures and pattern formation after thermal quenches in cholesteric liquid crystal droplets. J. Mater. Chem. C. 2021;9:8623–8639. doi: 10.1039/D1TC02056K.10.1039/D1TC02056KPierron J., Tournier-Lasserve V., Sopena P., Boudet A., Sixou P., Mitov M. Three-Dimensional Microstructure of a Polymer-Dispersed Liquid Crystal Observed by Transmission Electron Microscopy. J. Phys. II. 1995;5:1635–1647. doi: 10.1051/jp2:1995204.10.1051/jp2:1995204Bouligand Y., Livolant F. The organization of cholesteric spherulites. J. Phys. 1984;45:1899–1923. doi: 10.1051/jphys:0198400450120189900.10.1051/jphys:0198400450120189900Kitzerow H.S., Crooker P. Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals. Liq. Cryst. 1993;13:31–43. doi: 10.1080/02678299308029051.10.1080/02678299308029051Krakhalev M.N., Gardymova A.P., Prishchepa O.O., Rudyak V.Y., Emelyanenko A.V., Liu J.H., Zyryanov V.Y. Bipolar configuration with twisted loop defect in chiral nematic droplets under homeotropic surface anchoring. Sci. Rep. 2017;7:14582. doi: 10.1038/s41598-017-15049-6.10.1038/s41598-017-15049-6PMC567408029109533Hernández R., Provenzano C., Mazzulla A., Pagliusi P., Viola M., Cipparrone G. Cholesteric solid spherical microparticles: Chiral optomechanics and microphotonics. Liq. Cryst. Rev. 2016;4:59–79. doi: 10.1080/21680396.2016.1193065.10.1080/21680396.2016.1193065Yu C.H., Wu P.C., Lee W. Electro-Thermal Formation of Uniform Lying Helix Alignment in a Cholesteric Liquid Crystal Cell. Crystals. 2019;9:183. doi: 10.3390/cryst9040183.10.3390/cryst9040183Gardymova A.P., Krakhalev M.N., Zyryanov V.Y., Gruzdenko A.A., Alekseev A.A., Rudyak V.Y. Polymer Dispersed Cholesteric Liquid Crystals with a Toroidal Director Configuration under an Electric Field. Polymers. 2021;13:732. doi: 10.3390/polym13050732.10.3390/polym13050732PMC795682133673505Rudyak V.Y., Emelyanenko A.V., Loiko V.A. Structure transitions in oblate nematic droplets. Phys. Rev. E. 2013;88:052701. doi: 10.1103/PhysRevE.88.052501.10.1103/PhysRevE.88.05250124329282Ondris-Crawford R., Boyko E.P., Wagner B.G., Erdmann J.H., Žumer S., Doane J.W. Microscope textures of nematic droplets in polymer dispersed liquid crystals. J. Appl. Phys. 1991;69:6380–6386. doi: 10.1063/1.348840.10.1063/1.348840Li J., Wen C.H., Gauza S., Lu R., Wu S.T. Refractive Indices of Liquid Crystals for Display Applications. J. Display Technol. 2005;1:51. doi: 10.1109/JDT.2005.853357.10.1109/JDT.2005.853357Gennes P.G.d., Prost J. The Physics of Liquid Crystals. 2nd ed. Clarendon Press; Oxford, UK: 1998. (The International Series of Monographs on Physics).Guo S.M., Liang X., Zhang C.H., Chen M., Shen C., Zhang L.Y., Yuan X., He B.F., Yang H. Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals. ACS Appl. Mater. Interfaces. 2017;9:2942–2947. doi: 10.1021/acsami.6b13366.10.1021/acsami.6b1336628001028Saeed M.H., Zhang S., Cao Y., Zhou L., Hu J., Muhammad I., Xiao J., Zhang L., Yang H. Recent Advances in The Polymer Dispersed Liquid Crystal Composite and Its Applications. Molecules. 2020;25:5510. doi: 10.3390/molecules25235510.10.3390/molecules25235510PMC772778933255525