The overuse of fossil-based resources to produce thermoplastic materials and rubbers is dramatically affecting the environment, reflected in its clearest way as global warming. As a way of reducing this, multiple efforts are being undertaken including the use of more sustainable alternatives, for instance, those of natural origin as the main feedstock alternative, therefore having a lower carbon footprint. Contributing to this goal, the synthesis of bio-based rubbers based on β-myrcene and -β-farnesene was addressed in this work. Polymyrcene (PM) and polyfarnesene (PF) were synthesized via coordination polymerization using a neodymium-based catalytic system, and their properties were compared to the conventional polybutadiene (PB) and polyisoprene (PI) also obtained via coordination polymerization. Moreover, different average molecular weights were also tested to elucidate the influence over the materials' properties. The crosslinking of the rubbers was carried out via conventional and efficient vulcanization routes, comparing the final properties of the crosslinking network of bio-based PM and PF with the conventional fossil-based PB and PI. Though the mechanical properties of the crosslinked rubbers improved as a function of molecular weight, the chemical structure of PM and PF (with 2 and 3 unsaturated double bonds, respectively) produced a crosslinking network with lower mechanical properties than those obtained by PB and PI (with 1 unsaturated double bond). The current work contributes to the understanding of improvements (in terms of crosslinking parameters) that are required to produce competitive rubber with good sustainability/performance balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003078 | PMC |
http://dx.doi.org/10.3390/polym14071406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!