Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk.

Nutrients

Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain.

Published: March 2022

Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9003525PMC
http://dx.doi.org/10.3390/nu14071442DOI Listing

Publication Analysis

Top Keywords

milk exosomes
12
beneficial effects
8
extracellular vesicles
8
exosomes
5
effects bovine
4
milk
4
bovine milk
4
exosomes metabolic
4
metabolic interorgan
4
interorgan cross-talk
4

Similar Publications

This study introduces a comprehensive approach to enhancing SiN nanofilters for exosome isolation from bovine milk using the electrophoretic oscillation-assisted tangent-flow ultrafiltration (EPOTF) process. Reinforcing the nanofilter with electro-spun poly(vinylidene fluoride) (PVDF) fibers significantly improved durability under high-pressure conditions, withstanding nearly 2.8 times greater pressures than nonreinforced nanofilters.

View Article and Find Full Text PDF

The metabolic enzyme ATP citrate lyase is overexpressed in several cancers and links glucose metabolism with de novo fatty acid synthesis pathway by catalyzing the conversion of citrate into acetyl CoA and oxaloacetate. Potassium hydroxycitrate, its natural inhibitor, exhibits anticancer activity; however, its use is limited due to low bioavailability. This study aims to improve the efficacy of hydroxycitrate by its encapsulation in bovine milk exosome surface conjugated with folate for targeting lung cancer cells.

View Article and Find Full Text PDF

Milk-derived extracellular vesicles (mEVs) are promising therapeutic delivery platforms due to their natural bioactivity, biocompatibility, and ability to cross biological barriers. However, analyzing their cellular uptake and trafficking is limited by existing fluorescent labeling methods, which often cause dye leakage and disrupt vesicle integrity. Here, a glycan-anchored fluorescence labeling strategy for mEVs is developed, involving periodate oxidation of surface sialic acids followed by aniline-catalyzed ligation of hydrazide-functionalized fluorophores.

View Article and Find Full Text PDF

Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on postpartum HMEV molecules.

View Article and Find Full Text PDF

Camel milk exosomes regulate glucose metabolism by inhibiting mitochondrial complex I in hepatocytes.

BMC Vet Res

February 2025

Inner Mongolia Key Laboratory of Basic Veterinary Science, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.

Background: Camel milk is known to have hypoglycemic properties. Previous studies found that camel milk exosomes (CM-exo) may regulate cellular glucose metabolism through the inhibition of mitochondrial complex I, but this hypothesis has not been verified by other experiments. The objective of this study was to verify the hypothesis that CM-exo regulated glucose metabolism in hepatocytes by inhibiting mitochondrial complex I pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!