https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35406045&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 354060452022041320220716
2072-66431472022Mar30NutrientsNutrientsEffects of Isocaloric Fructose Restriction on Ceramide Levels in Children with Obesity and Cardiometabolic Risk: Relation to Hepatic De Novo Lipogenesis and Insulin Sensitivity.143210.3390/nu14071432Sugar intake, particularly fructose, is implicated as a factor contributing to insulin resistance via hepatic de novo lipogenesis (DNL). A nine-day fructose reduction trial, controlling for other dietary factors and weight, in children with obesity and metabolic syndrome, decreased DNL and mitigated cardiometabolic risk (CMR) biomarkers. Ceramides are bioactive sphingolipids whose dysregulated metabolism contribute to lipotoxicity, insulin resistance, and CMR. We evaluated the effect of fructose reduction on ceramides and correlations between changes observed and changes in traditional CMR biomarkers in this cohort. Analyses were completed on data from 43 participants. Mean weight decreased (-0.9 ± 1.1 kg). The majority of total and subspecies ceramide levels also decreased significantly, including dihydroceramides, deoxyceramides and ceramide-1-phoshates. Change in each primary ceramide species correlated negatively with composite insulin sensitivity index (CISI). Change in deoxyceramides positively correlated with change in DNL. These results suggest that ceramides decrease in response to dietary fructose restriction, negatively correlate with insulin sensitivity, and may represent an intermediary link between hepatic DNL, insulin resistance, and CMR.OlsonEmilyEDepartment of Pediatrics, George Washington University, Children's National Hospital, Washington, DC 20010, USA.SuhJung HJHChildren's Hospital Oakland Research Institute, University of California Benioff Children's Hospital Oakland, Oakland, CA 94609, USA.SchwarzJean-MarcJMDepartment of Basic Sciences, Touro University California, Vallejo, CA 94592, USA.NoworolskiSusan MSMDepartment of Radiology, University of California San Francisco, San Francisco, CA 94143, USA.JonesGrace MGM0000-0003-1106-0626Department of Basic Sciences, Touro University California, Vallejo, CA 94592, USA.BarberJohn RJRClinical and Translational Science Institute, Children's National Hospital, Washington, DC 20010, USA.Erkin-CakmakAycaADepartment of Pediatrics, Division of Endocrinology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, USA.MulliganKathleenKDepartment of Medicine, Division of Endocrinology and Metabolism, University of California San Francisco, San Francisco, CA 94110, USA.LustigRobert HRH0000-0001-6983-2639Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA.Mietus-SnyderMicheleM0000-0003-2791-9896Department of Pediatrics, Children's National Hospital, Division of Cardiology, George Washington University, Washington, DC 20010, USA.engP30 DK098722DKNIDDK NIH HHSUnited StatesClinical TrialJournal Article20220330
SwitzerlandNutrients1015215952072-66430Biomarkers0Ceramides30237-26-4FructoseIMBiomarkersmetabolismCardiometabolic Risk FactorsCeramidesmetabolismChildFructoseadministration & dosageHumansInsulin ResistancephysiologyLipogenesisLivermetabolismPediatric Obesitycardiometabolic riskchildhood obesityinsulin sensitivitysphingolipid ceramideThe authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
202221202231720223212022412132022413602022414602022330epublish35406045PMC900288410.3390/nu14071432nu14071432Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., et al. Heart disease and stroke statistics—2021 update: A report from the American Heart Association. Circulation. 2021;143:e254–e743. doi: 10.1161/CIR.0000000000000950.10.1161/CIR.000000000000095033501848Camhi S.M., Katzmarzyk P.T. Tracking of cardiometabolic risk factor clustering from childhood to adulthood. Int. J. Obes. 2010;5:122–129. doi: 10.3109/17477160903111763.10.3109/1747716090311176319593726New Research Uncovers Concerning Increases in Youth Living with Diabetes in the U.S. cdc.gov. [(accessed on 21 December 2021)]; Published 24 August 2021. Available online: https://www.cdc.gov/media/releases/2021/p0824-youth-diabetes.html.Curtin S.C. Trends in Cancer and Heart Disease Death Rates Among Adults Aged 45–64: United States, 1999–2017. Natl. Vital-Stat. Rep. 2019;68:1–9.32501204Meikle P.J., Summers S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 2017;13:79–91. doi: 10.1038/nrendo.2016.169.10.1038/nrendo.2016.16927767036Mottillo S., Filion K.B., Genest J., Joseph L., Pilote L., Poirier P., Rinfret S., Schiffrin E.L., Eisenberg M.J. The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010;56:1113–1132. doi: 10.1016/j.jacc.2010.05.034.10.1016/j.jacc.2010.05.03420863953Lim J.S., Mietus-Snyder M., Valente A., Schwarz J.-M., Lustig R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010;7:251–264. doi: 10.1038/nrgastro.2010.41.10.1038/nrgastro.2010.4120368739Drake I., Sonestedt E., Ericson U., Wallström P., Orho-Melander M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br. J. Nutr. 2018;119:1168–1176. doi: 10.1017/S000711451800079X.10.1017/S000711451800079X29759108Wang L., Martínez Steele E., Du M., Pomeranz J.L., O’Connor L.E., Herrick K.A., Luo H., Zhang X., Mozaffarian D., Zhang F.F. Trends in Consumption of Ultraprocessed Foods Among US Youths Aged 2–19 Years, 1999–2018. JAMA. 2021;326:519. doi: 10.1001/jama.2021.10238.10.1001/jama.2021.10238PMC835607134374722Hannou S.A., Haslam D.E., McKeown N.M., Herman M.A. Fructose metabolism and metabolic disease. J. Clin. Investig. 2018;128:545–555. doi: 10.1172/JCI96702.10.1172/JCI96702PMC578525829388924Micha R., Peñalvo J.L., Cudhea F., Imamura F., Rehm C.D., Mozaffarian D. Association Between Dietary Factors and Mortality From Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA. 2017;317:912–924. doi: 10.1001/jama.2017.0947.10.1001/jama.2017.0947PMC585267428267855Bremer A.A., Mietus-Snyder M., Lustig R.H. Toward a Unifying Hypothesis of Metabolic Syndrome. Pediatrics. 2012;129:557–570. doi: 10.1542/peds.2011-2912.10.1542/peds.2011-2912PMC328953122351884Wigger L., Cruciani-Guglielmacci C., Nicolas A., Denom J., Fernandez N., Fumeron F., Marques-Vidal P., Ktorza A., Kramer W., Schulte A., et al. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans. Cell Rep. 2017;18:2269–2279. doi: 10.1016/j.celrep.2017.02.019.10.1016/j.celrep.2017.02.01928249170Meeusen J.W., Donato L.J., Bryant S.C., Baudhuin L.M., Berger P.B., Jaffe A.S. Plasma Ceramides: A Novel Predictor of Major Adverse Cardiovascular Events After Coronary Angiography. Arterioscler. Thromb. Vasc. Biol. 2018;38:1933–1939. doi: 10.1161/ATVBAHA.118.311199.10.1161/ATVBAHA.118.31119929903731Othman A., Saely C.H., Muendlein A., Vonbank A., Drexel H., von Eckardstein A., Hornemann T. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care. 2015;3:e000073. doi: 10.1136/bmjdrc-2014-000073.10.1136/bmjdrc-2014-000073PMC436892925815206Lustig R.H., Mulligan K., Noworolski S.M., Tai V.W., Wen M.J., Erkin-Cakmak A., Gugliucci A., Schwarz J.-M. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity. 2016;24:453–460. doi: 10.1002/oby.21371.10.1002/oby.21371PMC473673326499447Schwarz J.-M., Noworolski S.M., Erkin-Cakmak A., Korn N.J., Wen M.J., Tai V.W., Jones G.M., Palii S.P., Velasco-Alin M., Pan K., et al. Effects of Dietary Fructose Restriction on Liver Fat, De Novo Lipogenesis, and Insulin Kinetics in Children With Obesity. Gastroenterology. 2017;153:743–752. doi: 10.1053/j.gastro.2017.05.043.10.1053/j.gastro.2017.05.043PMC581328928579536Gugliucci A., Lustig R.H., Caccavello R., Erkin-Cakmak A., Noworolski S.M., Tai V.W., Wen M.J., Mulligan K., Schwarz J.-M. Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis. 2016;253:171–177. doi: 10.1016/j.atherosclerosis.2016.06.048.10.1016/j.atherosclerosis.2016.06.04827451002Bielawski J., Pierce J.S., Snider J., Rembiesa B., Szulc Z.M., Bielawska A. Sphingolipid Analysis by High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) In: Chalfant C., Poeta M.D., editors. Sphingolipids as Signaling and Regulatory Molecules. Volume 688. Springer; New York, NY, USA: 2010. pp. 46–59. Advances in Experimental Medicine and Biology.10.1007/978-1-4419-6741-1_320919645Matsuda M., DeFronzo R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470. doi: 10.2337/diacare.22.9.1462.10.2337/diacare.22.9.146210480510Choi Y.S., Beltran T.A., Klaric J.S. Prevalence of Optimal Metabolic Health in U.S. Adolescents, NHANES 2007–2016. Metab. Syndr. Relat. Disord. 2021;19:56–63. doi: 10.1089/met.2020.0099.10.1089/met.2020.009933170075Ahmad F.B., Anderson R.N. The Leading Causes of Death in the US for 2020. JAMA. 2021;325:1829. doi: 10.1001/jama.2021.5469.10.1001/jama.2021.5469PMC814578133787821Roth G.A., Forouzanfar M.H., Moran A.E., Barber R., Nguyen G., Feigin V.L., Naghavi M., Mensah G.A., Murray C.J. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. N. Engl. J. Med. 2015;372:1333–1341. doi: 10.1056/NEJMoa1406656.10.1056/NEJMoa1406656PMC448235425830423Xanthakos S.A., Lavine J.E., Yates K.P., Schwimmer J.B., Molleston J.P., Rosenthal P., Murray K.F., Vos M.B., Jain A.K., Scheimann A.O., et al. Progression of Fatty Liver Disease in Children Receiving Standard of Care Lifestyle Advice. Gastroenterology. 2020;159:1731–1751.e10. doi: 10.1053/j.gastro.2020.07.034.10.1053/j.gastro.2020.07.034PMC768028132712103TODAY Study Group Long-Term Complications in Youth-Onset Type 2 Diabetes. N. Engl. J. Med. 2021;385:416–426. doi: 10.1056/NEJMoa2100165.10.1056/NEJMoa2100165PMC869725534320286Lawrence J.M., Divers J., Isom S., Saydah S., Imperatore G., Pihoker C., Marcovina S.M., Mayer-Davis E.J., Hamman R.F., Dolan L., et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001–2017. JAMA. 2021;326:717–727. doi: 10.1001/jama.2021.11165.10.1001/jama.2021.11165PMC838560034427600Lustig R.H. Ultraprocessed Food: Addictive, Toxic, and Ready for Regulation. Nutrients. 2020;12:3401. doi: 10.3390/nu12113401.10.3390/nu12113401PMC769450133167515Joseph P., Leong D., McKee M., Anand S.S., Schwalm J.-D., Teo K., Mente A., Yusuf S. Reducing the Global Burden of Cardiovascular Disease, Part 1. Circ. Res. 2017;121:677–694. doi: 10.1161/CIRCRESAHA.117.308903.10.1161/CIRCRESAHA.117.30890328860318Rutledge A.C., Adeli K. Fructose and the Metabolic Syndrome: Pathophysiology and Molecular Mechanisms. Nutr. Rev. 2008;65:S13–S23. doi: 10.1111/j.1753-4887.2007.tb00322.x.10.1111/j.1753-4887.2007.tb00322.x17605309Luukkonen P.K., Sädevirta S., Zhou Y., Kayser B., Ali A., Ahonen L., Lallukka S., Pelloux V., Gaggini M., Jian C., et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018;41:1732–1739. doi: 10.2337/dc18-0071.10.2337/dc18-0071PMC708264029844096Lai H., Otto M.C.D.O., Lee Y., Wu J., Song X., King I.B., Psaty B.M., Lemaitre R.N., McKnight B., Siscovick D.S., et al. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study. J. Am. Hearth Assoc. 2019;8:e012881. doi: 10.1161/JAHA.119.012881.10.1161/JAHA.119.012881PMC691526431711385Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005;115:1343–1351. doi: 10.1172/JCI23621.10.1172/JCI23621PMC108717215864352Walker E.M., Xanthakis V., Moore L.L., Vasan R.S., Jacques P.F. Cumulative sugar-sweetened beverage consumption is associated with higher concentrations of circulating ceramides in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2019;111:420–428. doi: 10.1093/ajcn/nqz257.10.1093/ajcn/nqz257PMC699708531826243Hanada K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids. 2003;1632:16–30. doi: 10.1016/S1388-1981(03)00059-3.10.1016/S1388-1981(03)00059-312782147Summers S.A., Chaurasia B., Holland W.L. Metabolic Messengers: Ceramides. Nat. Metab. 2019;1:1051–1058. doi: 10.1038/s42255-019-0134-8.10.1038/s42255-019-0134-8PMC754939132694860Bikman B.T., Guan Y., Shui G., Siddique M.M., Holland W.L., Kim J.Y., Fabrias G., Wenk M.R., Summers S.A. Fenretinide Prevents Lipid-induced Insulin Resistance by Blocking Ceramide Biosynthesis. J. Biol. Chem. 2012;287:17426–17437. doi: 10.1074/jbc.M112.359950.10.1074/jbc.M112.359950PMC336685122474281Chun L., Junlin Z., Aimin W., Niansheng L., Benmei C., Minxiang L. Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 2011;93:77–85. doi: 10.1016/j.diabres.2011.03.017.10.1016/j.diabres.2011.03.01721492950Park T.-S., Rosebury W., Kindt E.K., Kowala M.C., Panek R.L. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol. Res. 2008;58:45–51. doi: 10.1016/j.phrs.2008.06.005.10.1016/j.phrs.2008.06.00518611440Hilvo M., Vasile V.C., Donato L.J., Hurme R., Laaksonen R. Ceramides and Ceramide Scores: Clinical Applications for Cardiometabolic Risk Stratification. Front. Endocrinol. 2020;11:570628. doi: 10.3389/fendo.2020.570628.10.3389/fendo.2020.570628PMC755065133133018Poss A.M., Maschek J.A., Cox J.E., Hauner B.J., Hopkins P.N., Hunt S.C., Holland W.L., Summers S.A., Playdon M.C. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J. Clin. Investig. 2020;130:1363–1376. doi: 10.1172/JCI131838.10.1172/JCI131838PMC726956731743112Wang D.D., Toledo E., Hruby A., Rosner B.A., Willett W.C., Sun Q., Razquin C., Zheng Y., Ruiz-Canela M., Guasch-Ferré M., et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevención con Dieta Mediterránea) Circulation. 2017;135:2028–2040. doi: 10.1161/CIRCULATIONAHA.116.024261.10.1161/CIRCULATIONAHA.116.024261PMC549681728280233Lankinen M., Schwab U., Kolehmainen M., Paananen J., Nygren H., Seppänen-Laakso T., Poutanen K., Hyötyläinen T., Risérus U., Savolainen M.J., et al. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention. J. Nutr. 2015;146:662–672. doi: 10.3945/jn.115.220459.10.3945/jn.115.22045926962194Duan J., Merrill A.H. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma. J. Biol. Chem. 2015;290:15380–15389. doi: 10.1074/jbc.R115.658823.10.1074/jbc.R115.658823PMC450545125947379Gorden D., Myers D.S., Ivanova P.T., Fahy E., Maurya M.R., Gupta S., Min J., Spann N.J., McDonald J.G., Kelly S.L., et al. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic. J. Lipid Res. 2015;56:722–736. doi: 10.1194/jlr.P056002.10.1194/jlr.P056002PMC434031925598080Zuellig R.A., Hornemann T., Othman A., Hehl A.B., Bode H., Güntert T., Ogunshola O.O., Saponara E., Grabliauskaite K., Jang J.-H., et al. Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin-Producing Cells. Diabetes. 2014;63:1326–1339. doi: 10.2337/db13-1042.10.2337/db13-104224379346Hannich J.T., Loizides-Mangold U., Sinturel F., Harayama T., Vandereycken B., Saini C., Gosselin P., Brulhart-Meynet M., Robert M., Chanon S., et al. Ether lipids, sphingolipids and toxic 1-deoxyceramides as hallmarks for lean and obese type 2 diabetic patients. Acta Physiol. 2020;232:e13610. doi: 10.1111/apha.13610.10.1111/apha.1361033351229Summers S.A. Could Ceramides Become the New Cholesterol? Cell Metab. 2018;27:276–280. doi: 10.1016/j.cmet.2017.12.003.10.1016/j.cmet.2017.12.00329307517Tippetts T.S., Holland W.L., Summers S.A. Cholesterol—the devil you know; ceramide—the devil you don’t. Trends Pharmacol. Sci. 2021;42:1082–1095. doi: 10.1016/j.tips.2021.10.001.10.1016/j.tips.2021.10.001PMC859577834750017Rossi A.P., Fantin F., Zamboni G.A., Mazzali G., Zoico E., Bambace C., Antonioli A., Mucelli R.P., Zamboni M. Effect of moderate weight loss on hepatic, pancreatic and visceral lipids in obese subjects. Nutr. Diabetes. 2012;2:e32. doi: 10.1038/nutd.2012.5.10.1038/nutd.2012.5PMC334170823449531Schwimmer J., Ugalde-Nicalo P., Welsh J.A., Angeles J.E., Cordero M., Harlow K.E., Alazraki A., Durelle J., Knight-Scott J., Newton K.P., et al. Effect of a Low Free Sugar Diet vs. Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys. JAMA. 2019;321:256–265. doi: 10.1001/jama.2018.20579.10.1001/jama.2018.20579PMC644022630667502Cohen C.C., Li K.W., Alazraki A.L., Beysen C., Carrier C.A., Cleeton R.L., Dandan M., Figueroa J., Knight-Scott J., Knott C.J., et al. Dietary sugar restriction reduces hepatic de novo lipogenesis in adolescent boys with fatty liver disease. J. Clin. Investig. 2021;131:e150996. doi: 10.1172/JCI150996.10.1172/JCI150996PMC867083634907907