Fat deposition is the key factor affecting the efficiency of animal husbandry production. There are many factors affecting fat deposition, in which the gastrointestinal microbiota plays an important role. Therefore, the body mass index (BMI) was introduced into the evaluation of sheep fat deposition, and the different microbiota and functional pathways of the sheep gastrointestinal tract in different BMI groups were analyzed. We selected 5% of individuals with the highest and lowest BMI from a feed test population (357 in whole group). Microorganisms in 10 sites of the gastrointestinal tract in 36 individuals (18 in each group) were evaluated by 16S rRNA V3−V4 region sequencing. There were differences (p < 0.05) in fat deposition traits between different BMI groups. In the 10 parts of the gastrointestinal tract, the diversity and richness of cecal microflora in the high-BMI group were higher than those in low-BMI Hu sheep (p < 0.05). Principal coordinate analysis (PCoA) showed that there was separation of the cecum between groups, and there were differences in the cecal microbial community. Linear discriminant analysis effect size (LEfSe) showed that most biomarkers were in the cecum. On the basis of an indepth study of cecal microorganisms, 26 different bacterial genera were obtained (p < 0.05). Correlation analysis between them and the characteristics of fat deposition in sheep showed that Colidextribacter, Alloprevotella, and Succenivibrio were positively correlated with fat deposition, while Lachnospiraceae_ND3007_Group was negatively correlated (p < 0.05). The above results show that the cecum may be an important part leading to the difference of BMI in sheep, and its microorganisms may affect the level of fat deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996880PMC
http://dx.doi.org/10.3390/ani12070880DOI Listing

Publication Analysis

Top Keywords

fat deposition
28
gastrointestinal tract
12
body mass
8
bmi groups
8
fat
7
deposition
7
sheep
6
gastrointestinal
5
bmi
5
distribution difference
4

Similar Publications

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

The worldwide prevalence of obesity is a key factor involved in the epidemic proportions reached by chronic societal diseases. A revolution in the study of obesity has been the development of imaging techniques for the measurement of its regional distribution. These imaging studies have consistently reported that individuals with an excess of visceral adipose tissue (VAT) were those characterized by the highest cardiometabolic risk.

View Article and Find Full Text PDF

Objectives: To investigate the regulatory role of nucleotide-bound oligomerized domain-like receptor containing pyrin-domain protein 6 (NLRP6) in liver lipid metabolism and non-alcoholic fatty liver disease (NAFLD).

Methods: Mouse models with high-fat diet (HFD) feeding for 16 weeks (=6) or with methionine choline-deficient diet (MCD) feeding for 8 weeks (=6) were examined for the development of NAFLD using HE and oil red O staining, and hepatic expressions of NLRP6 were detected with RT-qPCR, Western blotting, and immunohistochemical staining. Cultured human hepatocytes (LO2 cells) with adenovirus-mediated NLRP6 overexpression or knock-down were treated with palmitic acid (PA) in the presence or absence of compound C (an AMPK inhibitor), and the changes in cellular lipid metabolism were examined by measuring triglyceride, ATP and β-hydroxybutyrate levels and using oil red staining, RT-qPCR, and Western blotting.

View Article and Find Full Text PDF

Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!