In modern nature conservation and rewilding there is a need for controlling the movements of large grazers in extensively managed areas. The inflexibility of physical fencing can be a limitation in nature management, and the physical boundaries created by physical fencing can have detrimental effects on wildlife. Virtual fencing systems provide boundaries without physical structures. These systems utilise collars with GPS technology to track animals and deliver auditory or electric cues to encourage the animals to stay within the predefined boundaries. This study aims to assess the use of virtual fencing (Nofence©) to keep twelve Angus cows (Bos taurus) within a virtual enclosure without compromising their welfare. As such, the study examines inter-individual differences between the cows as well as their herd behaviour, when reacting and learning to respond appropriately to virtual fencing. Moreover, the activity of the cows was used as an indicator of welfare. The virtual fencing was successful in keeping the herd within the designated area. Moreover, the cattle learned to avoid the virtual border and respond to auditory cues, where the cows received significantly more auditory warning and electric impulses per week throughout the first 14 days than the remaining 125 days (p < 0.001). The cows were found to express both inter-individual differences (p < 0.001) and herd behaviour. The cattle did not express any significant changes in their activity upon receiving an electrical impulse from the collar. Thus, indicating that there were little to no acute welfare implications associated with the use of virtual fencing in this study. This study clearly supports the potential for virtual fencing as a viable alternative to physical electric fencing. However, it also shows that both individual differences in personality and herd structure should be considered when selecting individuals for virtual fencing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996897 | PMC |
http://dx.doi.org/10.3390/ani12070842 | DOI Listing |
Animal
December 2024
Venn Research Association for the Promotion of Virtual Fencing in Tyrol and the Alpine region. Brixnerstraße 1, 6020 Innsbruck, Austria.
Virtual fencing (VF) is a modern fencing technology using Global Positioning System-enabled collars which emit acoustic signals and, if the animal does not respond, electric pulses. Studies with cattle indicate successful learning and no distinct negative impact on the animals' behaviours and stress level. However, the number of studies testing VF with goats is relatively small.
View Article and Find Full Text PDFAnimal
December 2024
Department of Crop Sciences, Grassland Science, Georg-August-University Göttingen, Von-Siebold-Strasse 8, 37075 Göttingen, Germany; Centre for Biodiversity and Sustainable Land Use, Büsgenweg 1, 37075 Göttingen, Germany.
Animal welfare is integral to sustainable livestock production, and pasture access for cattle is known to enhance welfare. Despite positive welfare impacts, high labour requirements hinder the adoption of sustainable grazing practices such as rotational stocking management. Virtual fencing (VF) is an innovative technology for simplified, less laborious grazing management and remote animal monitoring, potentially facilitating the expansion of sustainable livestock production.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, Brazil.
The papers in this Special Issue, entitled "Editorial Board Members' Collection Series: Behaviour, Applied Ethology and Welfare of Farmed Animals", bring to the forefront empirical data and theoretical discussions that contribute to the discussion of contemporary issues, from environmental enrichment to improvements in animal welfare, the intensification of animal rearing systems, and innovations like virtual fencing and dietary adjustments to improve animal health and welfare in organic systems [...
View Article and Find Full Text PDFAnimals (Basel)
July 2024
Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
Animal
August 2024
University College Dublin, School of Agriculture and Food Science, Belfield, Dublin 4, Ireland.
Virtual fencing (VF) technology is gaining interest due to its potential to facilitate sustainable grazing management. It allows farmers to contain grazing livestock without physical fences, thereby reducing the time and labour associated with the implementation of conventional fences. From a conservation perspective, some sensitive areas within uplands should not be grazed during certain periods of the year, and VF provides an invisible and moveable fence line that can exclude livestock from these areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!