The etiology of spontaneous cranial cruciate ligament rupture in dogs is unknown despite being one of the most impacting orthopedic diseases in dogs. Numerous studies have contributed to the understanding of a multifactorial pathogenesis, this, however, without identifying a pivotal link to explain progressive collagen degeneration and osteoarthritic changes. In human medicine, recent reports have identified relaxin as a triggering factor in ligament ruptures in knee and metacarpal joints. We thus hypothesized that relaxin might also play a role in canine cruciate ligament rupture. Relaxin's primarily known property is connective tissue remodeling through collagenolysis. We therefore investigated relaxin and its cognate receptors LGR7/LGR8 in 18 dogs with cranial cruciate ligament disease (CCLD) and compared them to a group of dogs with normal stifle joints. Applying immunohistochemistry (IHC), double immunofluorescence (dIF), and western blot analysis (WB), we found strong and significantly increased expression of both relaxin and its receptors in ruptured cruciate ligaments, and in synovial membranes. Pattern of immuno-staining on dIF strongly suggests relaxin binding to primed receptors and activation of signaling properties, which in turn may have affected collagen matrix metabolism. Thus, in canine cranial cruciate ligament disease, relaxin/receptor signaling may be a primary trigger for collagen fiber degradation and collagen lysis, eventually followed by ligament rupture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8996950PMC
http://dx.doi.org/10.3390/ani12070819DOI Listing

Publication Analysis

Top Keywords

cruciate ligament
20
cranial cruciate
16
ligament disease
12
ligament rupture
12
relaxin receptors
8
stifle joints
8
dogs cranial
8
ligament
7
cruciate
6
dogs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!