Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010747 | PMC |
http://dx.doi.org/10.1016/j.jbc.2022.101878 | DOI Listing |
J Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.
Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
[This corrects the article DOI: 10.1039/D4SC06593J.].
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy.
: A large amount of recent evidence suggests that cellular inability to consume oxygen could play a notable part in promoting sepsis as a consequence of mitochondrial dysfunction and oxidative stress. The latter could, in fact, represent a fundamental stage in the evolution of the "natural history" of sepsis. Following a study previously conducted by the same working group on heart samples, the present research project aims to evaluate, through an immunohistochemical study, the existence and/or extent of oxidative stress in the brains of subjects who died due to sepsis and define, after reviewing the literature, its contribution to the septic process to support the use of medications aimed at correcting redox anomalies in the management of septic patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!