Evident role of inflammation in cancer development and progression prompted the application of anti-inflammatory medications as a therapeutic strategy. The major bottleneck for the anti-inflammatory drugs is targeted delivery to the cancerous cell. Nanotechnology has provided safe and effective way for targeted cancer therapy. However, the complex and heterogeneous traits of cancer, incomplete information on fate and behavior of nanomedicines in human body, and lack of large-scale commercial production have slowed down the pace of nanomedicines development. To shift the paradigm from conventional cancer therapeutics to anti-inflammatory nano-therapeutics, thorough understanding of the strategies, progress, success, challenges and future perspectives are needed. The present review highlights all these aspects in addition to innovations patented on them. In fact, patent plays a vital role in protection of innovations, and further translation of lab-scale outcomes into bedside medications. Thus, the review introspects and recognizes the glitches in successful clinical translation of anti-inflammatory nanomedicines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2022.04.004 | DOI Listing |
Int J Lang Commun Disord
December 2024
Hearing, Speech & Language Center, Sheba Medical Center, Tel Hashomer, Israel.
Background: Head and neck cancer (HNC) is amongst the 10 most common cancers worldwide and has a major effect on patients' quality of life. Given the complexity of this unique group of patients, a multidisciplinary team approach is preferable. Amongst the debilitating sequels of HNC and/or its treatment, swallowing, speech and voice impairments are prevalent and require the involvement of speech-language pathologists (SLPs).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!