Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bioaugmentation of nitrifying cultures can accelerate nitrification during startup and transition periods of recirculating aquaculture system (RAS) operations. To formulate nitrifying cultures for RASs, impacts of ammonia and salinity (NaCl) on culturing nitrifying microorganisms were comprehensively investigated by including currently known groups of nitrifying microorganisms (ammonia oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), comammox, Nitrospira, and Nitrobacter). By varying ammonia loading rate (ALRs of 1.6, 8, 20, 40, 60 and 150 mgN/L/d) of continuous-flow bioreactors fed with inorganic medium experimented for culture preparation, cultures containing distinct patterns of nitrifying communities were produced. Operating the reactors at the ALRs of ≤40 mgN/L/d, resulting in the effluent total ammonia nitrogen (TAN) and nitrite concentrations of ≤2.64 and ≤0.53 mgN/L, respectively, delivered the consortia consisting of a broad spectrum of substrate affinity nitrifying microorganisms. At the lower ranges of these ALRs (≤8 mgN/L/d), the most desirable consortia comprising comparable numbers of AOB, AOA, and comammox could be produced (the effluent TAN concentrations of ≤0.20 mgN/L), which would be resilient for applying in various RAS types. Enriching the cultures at the ALRs of ≥60 mgN/L/d allowed only the nitrifying microorganisms with low substrate affinity to dominate, incongruent with the consortia found in actual RASs. AOB were adaptable at all salinity studied (2, 15, and 30 g/L), while AOA and comammox were sensitive to elevated salinity (15 and 30 g/L, respectively). The ammonia removal rate of a culture prepared at 2 g/L salinity decreased largely when applied at 15 and 30 g/L. In contrast, those prepared at 15 and 30 g/L were more robust to different salinity. Separately preparing the cultures at different salinity for uses in freshwater-low salinity and brackish-marine RASs is recommended. The findings of this work enhance our understanding on how to formulate nitrifying culture augmentation for used in different RAS types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!